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ABSTRACT

Over the past decade, data science courses have been growing more
popular across university campuses. These courses often involve a
mix of programming and statistics and are taught by instructors
from diverse backgrounds. In our experiences launching a data
science program at a large public U.S. university over the past four
years, we noticed one central tension within many such courses: in-
structors must finely balance how much computing versus statistics
to teach in the limited available time. In this experience report, we
provide a detailed firsthand reflection on how we have personally
balanced these two major topic areas within several offerings of a
large introductory data science course that we taught and wrote an
accompanying textbook for; our course has served several thousand
students over the past four years. We present three case studies
from our experiences to illustrate how computer science and statis-
tics instructors approach data science differently on topics ranging
from algorithmic depth to modeling to data acquisition. We then
draw connections to deeper tradeoffs in data science to help guide
instructors who design interdisciplinary courses. We conclude by
suggesting ways that instructors can incorporate both computer
science and statistics perspectives to improve data science teaching.
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1 INTRODUCTION

It is widely acknowledged that both computer science and statistics
are fundamental to data science [13]. The computer science per-
spective generally focuses on “how”—how to do data analysis in
practical real-world settings. Data scientists write programs using
languages like Python and use software packages like pandas [28]
to load, manipulate, and clean data. Computer science also provides
tools to analyze the runtime and memory usage of code. These
tools have led to the development of systems for working with
large datasets, including relational databases and distributed com-
puting (e.g. MapReduce, Hadoop, Spark). Finally, data scientists rely
on algorithms for numeric optimization to fit their models. Without
computer science, data scientists are limited to small datasets and
cannot make use of the vast amounts of data being generated today.

On the other hand, the statistics perspective generally focuses on
“why”—for instance, why an analysis on a relatively small sample
can generalize to a larger population. Statistics provides funda-
mental tools for inference like hypothesis testing and confidence
intervals. These statistical tools let data scientists say precisely why
they have (or don’t have) confidence in the results of an analysis.
And statistical learning gives basis to the models that data scientists
use to make predictions. Without statistics, data scientists can only
draw conclusions about their samples—they can’t use their samples
to make inferences or predictions about the unobserved population.

Domain experts acknowledge that data science courses should
demonstrate how both computer science and statistics can be ap-
plied to do useful data analyses [14]. However, data science in-
structors then face the practical challenge of providing students
with an effective balance of these two fields, given the limited time
available in a quarter- or semester-long course. In practice, differ-
ent instructors strike different balances between computing and
statistics content. This tension is reflected in data science programs
as a whole as well—some programs have more of an emphasis on
computing, and others have more statistics, as discussed in past
SIGCSE panels and reports [2, 4, 7, 20, 22, 33, 35, 36].

This experience report is, to our knowledge, the first to
reflect on why and how computer science and statistics in-
structors approach teaching data science differently. The au-
thors of this paper come from both computer science and statistics
departments at a large public U.S. university. We have worked to-
gether over the past four years to design curriculum and write a
textbook for an undergraduate data science course that serves over
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2,500 students a year. This paper presents three case studies of
where we made critical pedagogical changes along the way.

On the surface, these discussions were about changes to a specific
course. However, we found that our negotiations actually revealed
fundamentally different approaches to data science. Each case study
explains how our approaches differed, and how we eventually in-
tegrated both perspectives. In the first case study, we discuss pro-
gramming abstractions—should our students implement gradient
descent themselves or use a Python package? In the second, we
discuss how to approach statistical modeling for different levels of
mathematical maturity. In the third, we discuss the tension between
working with clean scientific data versus messy data in the wild.

We reflect on our case studies as a whole to show how the
different approaches of computer science and statistics also mirror
deeper tradeoffs in data science education: the tradeoff between
emphasizing inference and prediction, and the tradeoff between
theory and practice. We conclude by making suggestions for data
science instructors who bridge the gap between the two disciplines.
This experience report’s contributions to computing education are:

o Three case studies from our experiences that highlight the
different approaches that computer science and statistics
instructors take to teaching data science.

o A discussion of fundamental tradeoffs for data science peda-
gogy, and suggestions for other topics that can benefit from
a close coupling of computer science and statistics.

2 RELATED WORK

Data science as a discipline was established in part because of the
need for people who can combine computing and statistical knowl-
edge for data analyses. This need is acknowledged by scientific
research [23], industry [17], statisticians [13, 18], and computer sci-
entists [8]. To this end, a prominent National Academy of Sciences
report calls for undergraduate data science programs to include
topics from both computer science and statistics [14]. However, de-
veloping data science curricula is challenging for instructors who
need to decide what topics to include from these two disciplines.
This challenge of balancing disciplinary focus is reflected in
SIGCSE papers on data science education from the past five years.
One theme from this past work on data science curricula design is
that each instructor strikes a different balance between computing
and statistics content. For instance, computer science instructors
might add data science topics to existing computing courses, thus
focusing on computing more than statistics. Instructors have taken
this approach in introductory courses for computing majors [16],
computing courses for non-majors [5], and data systems courses
[11]. Similarly, statistics instructors include data science topics
into statistics courses that might otherwise not include computing,
including introductory courses [6, 27] and more advanced courses
[21, 30]. Finally, instructors have designed brand new courses that
try to focus equally on both computing and statistics [3, 19, 34].
These courses tend to be listed under a data science department
rather than a computer science or statistics department. As a whole,
this set of prior work provides examples of successful course designs.
In contrast, we take a broader view in this paper by examining how
computer science and statistics instructors approach data science
topics differently rather than arguing for a specific course design.

Beyond single courses, data science degree programs also differ
in how they balance computer science and statistics content. Some
programs place more course hours in computing [20, 33], some
programs place more in statistics [4, 7, 35, 36], and other programs
have equal course hours in computer science and statistics [2, 22].
Rather than debating what the goals of a program should be, this
paper describes the thinking that computer science and statistics
instructors go through when setting learning goals in the first place.

3 SETTING: A LARGE UNDERGRADUATE
DATA SCIENCE COURSE AND TEXTBOOK

Three authors of this paper helped design and instruct an upper-
division undergraduate data science course at a large public U.S.
university; two authors are from computer science and one is from
statistics. This course was launched in Spring 2017. It is now a
requirement for both data science majors and minors at our institu-
tion, serving over 2,500 students during the 2020-2021 academic
year. In this course, students learn standard computational tools for
working with data, including relational databases, Python-based
programming tools (e.g., pandas [28], scikit-learn [31]), and al-
gorithmic techniques such as gradient descent. Students also learn
statistical techniques for modeling, including statistical techniques
for visualization, regression, and bias-variance tradeoff. Our course
prepares students for real-world analyses by showing how both
computer science and statistics are used throughout data science.

Since our course includes topics from both computer science
and statistics, it is co-taught each term by one instructor from the
computer science department and one from the statistics depart-
ment. We are not the only instructors involved with the course;
other faculty from our departments have also instructed and made
helpful contributions to the curriculum. Although we do not speak
for all the instructors of the course, we have directly instructed in
seven out of the eleven offerings so far. We are also the authors of
a textbook used in this course [24].

In the past four years of working together, we have made many
changes to the course and its accompanying textbook. Most of
these changes needed discussion amongst this paper’s co-authors
before implementing. In the following sections, we share three case
studies where these discussions highlighted how our backgrounds
approach data science differently, and how we reached agreement
by acknowledging the perspectives of colleagues in different fields.

Caveats: We acknowledge that other institutions have different
arrangements for teaching—for instance, some courses alternate in-
structors between computer science and statistics, and data science
programs have students take separate courses from both computer
science and statistics. To provide experiences that remain relevant
across different teaching arrangements, in this paper we focus on
more foundational data science concepts rather than course-specific
logistical details. Although our case studies happened to take place
in one course, we expect that they provide insight for instructors
who must strike their own balance between computer science and
statistics content when designing and iterating on their courses.

4 THREE CASE STUDIES

This section reports on three case studies from our course and
textbook design experiences. For each case study, we summarize
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Figure 1: We considered multiple ways to teach students to
fit models using Python. Each approach works at a differ-
ent level of abstraction, and our debate centered around how
much implementation students should do themselves.

what actually happened by presenting a back-and-forth ‘simulated
conversation’ between a computer science (CompSci) instructor
and a statistics (STAT) instructor. These conversations are meant
to capture where each side started from, how each presented the
benefits and tradeoffs of their pedagogical approach, and eventually
how we came to a resolution!. Since our reported conversations
are ‘simulated’, they do not directly quote individuals, although we
consulted our old meeting notes where possible. Instead they are
meant to capture the high-level points-of-view that emerged from
us jointly reflecting on actual pedagogical negotiations we had with
each other throughout the past four years of working together.

4.1 Do We Need to Delve into Algorithms?

One of the most foundational algorithms in data science is gradi-
ent descent, which is used to fit all kinds of models ranging from
simple (e.g., linear regression) to complex (e.g., neural networks).
The gradient descent algorithm can be taught at multiple levels of
abstraction. But, which level of abstraction is best for teaching data
science? Or, do we even need to teach it at all? We tried several
approaches over different iterations of our course and its textbook,
summarized in Figure 1.

Starting Points.

STAT instructor: The main goal of our course is to teach students
how to do sound work with data. It’s key that our students learn the
importance of using well-tested and well-implemented code when
they optimize and fit models. The Python scikit-1learn package

! This explanatory approach of a simulated dialogue is inspired by business school
case studies that show how stakeholders discuss and make business decisions [37].

implements all the models we teach, and our students will likely
only use the fit() method from scikit-learn once they start
working on real data problems (Figure 1a). Teaching them how to
implement models and gradient descent from scratch (Figure 1d) is
not necessary since packages are well-tested and optimized.

CompSct instructor: Well, I think numeric optimization is an
important topic in data science. Even students who only use pack-
ages like scikit-learn will still need to understand gradient de-
scent in order to fully use its APIL There are interesting teaching
possibilities here that connect the theory of optimization with its
implementation! For example, we can use automatic differentiation
software like the autograd module from pytorch (Figure 1b). Or,
we could have students calculate and implement their own loss
functions, then pass those into gradient descent optimizers like
scipy.minimize (Figure 1c).

Discussion.

STAT instructor: Teaching students to implement gradient de-
scent seems great for a specialized course on numeric optimization.
But it’s less clear how implementing gradient descent from scratch
helps them understand and draw conclusions from real-world data.
How do you see it fitting into the larger data science picture?

CowmprSci instructor: Optimization is an important topic in data
science because it lets us determine what models are feasible to use
given real-world constraints on time and memory usage. For in-
stance, neural networks could only be applied to realistic problems,
like image recognition, after we had more powerful computers and
better gradient descent algorithms. Implementing gradient descent
lets us teach students about the runtime and memory needed to fit
models. For example, we can have students implement both batch
and stochastic gradient descent, ask them to fit models using both
algorithms, and then have them explain why one might converge
faster than the other. It’s important that our students can say, ‘T
can still fit this model if the training data doubles in size, but I'll need
to change my approach if the training data is ten times larger.”

STAT: OKk, I agree that runtime is an important tradeoff for data
scientists to consider. Runtime is especially important for large,
complex models like neural networks. But, teaching gradient de-
scent at levels of abstraction lower than scikit-learn (Figure 1a)
has drawbacks, especially if students need to learn other complex
Python packages to do so. We’ve seen that students already find it
hard to learn a package specifically for gradient descent—although
they wrote fewer lines of code, each package has specific idioms
that they had to learn. That’s a lot of cognitive overhead! It’s useful
to teach students how to work with multiple Python packages, but
we only have so much time in one course.

CompScr: Point taken. Though there’s another aspect to what
I mentioned earlier: to fully use the scikit-learn APIL our stu-
dents will need to have a deep understanding of gradient descent.
For instance, scikit-learn models let data scientists change the
stopping criteria and the maximum number of iterations, and they
need to experiment with these parameters every time they try to fit
a model. I want our students to identify when they need to change
these parameters and what the tradeoffs are—for example, if their
model doesn’t converge, they should know they can increase the
cap on the number of iterations if they’re willing to run for longer.



Stat: I agree that’s important, but can’t we just teach the gradient
descent algorithm using pseudocode to get those concepts across?

CowmpSctr: I think students develop better intuition about gradient
descent when they implement and debug a basic version of it them-
selves. For example, they can add custom logging statements into
their own implementations to look at their program’s behavior at a
fine-grained level. scikit-learn also implements other optimiza-
tion algorithms, including second-order methods like BFGS [26].
Even though we don’t have time in our course to explain these
algorithms in detail, implementing gradient descent from scratch
gives students a basic framework to start understanding when other
algorithms can be useful.

Resolution.

Our discussion eventually converged, and we agreed that gradi-
ent descent was important for our students to understand well. Data
scientists make many tradeoffs when choosing and fitting models—
they consider how much data they have, whether the model might
underfit or overfit the data, and how accurate and interpretable
the model is. At each step in modeling, data scientists must also
think about the computational resources that they have access to.
We found gradient descent to be a natural place to introduce these
central considerations in modeling.

Thus, we resolved to take a hybrid approach. We teach students
to use scikit-learn (Figure 1a) but also teach them to implement
a basic version of gradient descent completely from scratch in
Python (Figure 1d). Since our students have some programming
background, we found they could implement basic versions of gra-
dient descent after one lecture’s worth of explanation through
pseudocode, which we felt was reasonable for our course’s time
constraints. We also used this hybrid approach in our textbook, and
took care to point out that the book contains simple implementa-
tions for teaching purposes only, not for production use.

4.2 How to Approach Statistical Modeling?

Data scientists use statistical models to draw inferences and make
predictions using data. In this case study, we discuss various ap-
proaches for teaching the foundations of modeling.

Starting Points.

StaT: The likelihood principle offers a unifying approach to mod-
eling that extends to many settings. In a traditional statistics course,
we define a simple linear model as Y = 0y +0;x +¢, where the errors,
€, are independent normally distributed with mean 0 and constant
variance. From this perspective, fitting a model means finding the
model parameters that maximize the likelihood of observing the
data, i.e. maximum likelihood estimation (MLE) (Figure 2a).

When we work through MLE derivations, we motivate differ-
ent loss functions. For instance, the simple linear model described
above naturally connects to squared loss (Figure 2b). And, at the
end of the derivation, we can get closed-form solutions for model
coefficients, which have meaningful interpretations. For instance,
the ‘regression effect’ clearly appears in the slope of the regression
line—the sample correlation scaled by the standard deviations of x
and y (Figure 2c). The beauty of the likelihood principle is that it
shows how a data-generating model leads to both loss functions
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Figure 2: This sketch of a derivation for the simple linear
model parameters highlights several possible pedagogical
approaches. Instructors can start with (a) likelihood princi-
ple, (b) loss minimization, or (c) a closed-form solution.

and parameter estimates. We can also use this approach to make
inferences for model parameters.

CompScr: OK, but my focus is on prediction, not inference—
I'm not as concerned about the exact form of the model and its
parameters compared to getting a predictor with high accuracy.
Although the likelihood principle leads to useful interpretations of
model parameters, I often have so many parameters in my models
that there isn’t a useful interpretation for the parameters anyway.
An over-parameterized model isn’t a big concern for predictive
accuracy since we can control over-fitting through regularization.
Moreover, since we can fit models using loss minimization via
gradient descent, we don’t need to find closed-form solutions for
the MLE. And, the likelihood principle for widely used models like
logistic regression gets complicated quickly. The advantage of using
the MLE in this case is not clear.

Discussion.

CompScr: When students go into the world, it’s unlikely that
they will need to consider the likelihood principle when they fit
models. Most models we use in this course have closed-form MLE
solutions because they are relatively simple, but more complicated
models like neural networks don’t have nice analytic solutions.
When faced with more complex problems, students might get easily
stumped because they can’t cast the problem in terms of likelihood.

Stat: MLE shows explicitly how a data scientist’s assumptions af-
fect how we fit the model. Important extensions are well-motivated
by this approach, such as weighted regression and the generalized
linear model. The likelihood approach I'm proposing will require



us to state model assumptions upfront (Figure 2a). And when as-
sumptions are violated, the likelihood approach can provide a path
forward. Without MLE, I'm concerned the course sends the message
that data scientists can pick any arbitrary model and loss function
they want without considering the assumptions behind them.

ComprSctr: I agree that it’s important for students to understand
whether a model is appropriate for their data. However, to under-
stand MLE, students need to draw on knowledge of random vari-
ables, expectation, probability distributions, and calculus. We’ve
tried to teach MLE before, but students felt unprepared, and they
fixated on the math rather than the underlying concepts we really
wanted to teach. In hindsight I think we underestimated how hard
it is to develop fluency with probability.

Start: I agree the technical machinery used with MLE can become
a burden for students, especially when they first see multivariate
modeling. But even if we don’t cover MLE in this course, it’s im-
portant to help students build mathematical maturity. The stepping
stones to MLE—expectation, variance, and bias—are useful when
we teach general modeling principles. For example, in our course
we make a distinction between empirical loss (or training set av-
erage error) and expected loss (based on model error). When we
teach that a model’s test set error is a statistical estimator for the
expected loss, we reinforce statistical ideas that they can use later.

Resolution.

We converged to agree that the likelihood principle is an im-
portant concept in modeling. However, we could only realistically
cover modeling from a loss minimization approach based on the
time constraints of our course and prerequisite student knowledge
(Figure 2b). Thus we postponed the likelihood principle and MLE to
amore advanced theory course. Then in our course and its textbook,
we included the conceptual stepping stones to the likelihood princi-
ple by teaching model fitting through empirical loss minimization.

We now teach a broad array of loss functions—e.g., squared, ab-
solute, and cross-entropy loss—but do not show their derivations
from a likelihood standpoint. We also encourage students to con-
sider how prediction errors should be penalized based on domain
knowledge. For instance, if over-medication in surgery can lead to
serious health problems, then an asymmetric loss function that pe-
nalizes overestimates more than underestimates is preferable [29].
By taking the middle ground and focusing on loss and optimization,
we give a balanced perspective that covers both inference for model
parameters and prediction of future observations.

4.3 How to Approach Real-World Data?

It takes a lot of work to find useful data for teaching, so we had
many discussions on what data to use in our course and textbook.

Starting Points.

StarT: Data analyses begin by asking how the data were collected.
One important distinction is whether or not the data were collected
according to a chance mechanism. With probability sampling, we
can teach the notion of representative data. For instance, with a sim-
ple random sample (SRS) we know that every potential sample has
the same chance of being selected. More broadly, in the real world,
alternative probability methods (e.g., stratified, cluster, systematic
sampling) are used in scientific surveys. If we ask students to carry

out probability calculations for small populations, then they can
better understand the importance of random samples.

CompScr: These sampling methods are a nice-to-have rather
than a necessity. The SRS is all we need to get the point across to
students. 'm not sure why we need to discuss multiple random
sampling methods when nearly all of the datasets in the course
are not collected using random sampling. For example, we work
with datasets of social media posts (e.g., tweets), housing prices,
and emails. All of these are examples of found data: data scientists
usually “find” data that are already available online rather than
collecting data themselves. And none of these are probability sam-
ples. This also reflects a current trend in data analysis: Traditional
scientists start with a research question and then collect data specif-
ically to answer that question. Today, data are more plentiful and
accessible, so data scientists often start with available found data
and explore interesting questions that data might be able to answer.

Discussion.

CompSct: Probability calculations with various sampling schemes
can get complex quickly, and I don’t see the point of teaching count-
ing arguments and combinatorics. It’s also easy to spend too much
time on fun probability problems with dice and cards. While this
develops intuition for probability, it can feel very disconnected from
real-world data analysis problems.

StaT: I agree it’s tempting to teach too many fun probability
problems and that counting arguments have little value in data
analysis. But, sampling methods do have important real-world im-
plications, especially in recent times: for instance, treating margins
of error in election polling as if the data were from a SRS winds up
under-estimating the true margin of error [38]. And more impor-
tantly, for nonrandom samples it doesn’t make sense to compute
p-values or confidence intervals—these methods assume random
draws from a population, but found data break that assumption.

CompScr: Yes, ignoring the sample design can lead to major
mistakes. There are many famous examples where ignoring this
led to major problems with the analysis, like the wrong call in the
Dewey-Truman election [1]. Still, even the most careful surveys
aren’t true probability samples because of issues like non-response
[15]. Should we teach students random samples when in reality
there are many caveats? Few samples are truly random in practice.

StaT: That is indeed the case, but the ideal scenario is worth
knowing about and it gives students a useful comparison point
against the data they do have. And, there are statistical methods for
adjusting for, say, non-response [39]. Even if we don’t have time
in this course to talk about specific methods, data scientists should
know that these methods exist. More importantly, data scientists
need to be aware of common ways that their samples may not be
representative. That way, when they do assume that their sample
is representative, they should be able to justify it.

CowmpSct: I do think what you are saying is important; our stu-
dents should acknowledge when they make these assumptions and
point out potential sources of bias for their analyses. But, I want to
return to an earlier point because I think it is an important one. So
much of today’s data are large administrative data, such as digital
traces. It doesn’t make sense to ignore these data sources.

Stat:Iagree we need to expand beyond an idealized view. But we
also want our students to avoid “big data hubris” [25]—thinking that



having more data automatically leads to sound analyses. They need
to leverage big data where it makes sense. They also need to un-
derstand how to analyze scientifically-collected data. We shouldn’t
only teach one or the other, because they will use both on the job.

Resolution.

Although our starting points were about sampling methods, the
discussion quickly went to the core of how to treat representative
and non-representative data. We decided to reduce the emphasis
on specific sampling methods, but kept the stratified sample as a
comparison to the SRS (simple random sample). The main change
we made to the course and textbook was to develop a framework
to help data scientists reason about whether or not their data are
representative. We extended the traditional way of teaching survey
sampling to introduce the target population, access frame, and sam-
ple. This framework gives us the tools to discuss accuracy, including
various sources of bias (e.g., coverage, selection, non-response), and
has a natural extension for introducing measurement error. The
framework also allows us to situate and link together different
kinds of data, including survey samples, controlled experiments,
administrative data, and instrumental measurements.

5 DISCUSSION

In this section, we draw common themes from our three case stud-
ies, focusing on the places where computer science and statistics
approach data science differently. These case studies show how
these two academic disciplines developed with distinct goals—these
goals motivate pedagogical tradeoffs that instructors make when
designing data science courses. We discuss these tradeoffs and sug-
gest ways that instructors might acknowledge and incorporate both
perspectives into data science teaching.

5.1 Inference and Prediction

A central tradeoff in data science pedagogy is balancing the empha-
sis on inference with emphasis on prediction. This is illustrated in
the second case study of this paper (Section 4.2). In our experience,
statistics focuses more on inference while computer science focuses
more on prediction. For instance, a data scientist can construct con-
fidence intervals to infer the slope of a regression line in a model.
In contrast, when data scientists focus on prediction, their goal is
to find a model with high predictive accuracy. This tradeoff is anal-
ogous to the contrast between the data modeling and algorithmic
modeling cultures in statistics [10]. An overly extreme focus on
inference might only allow relatively simple models. On the other
hand, an overly extreme focus on prediction might select models
without regard for interpretability or robustness.

The experiences from our case studies have led us to the view
that teaching both inference and prediction together helps students
appreciate the difference and learn when to emphasize one over
the other. For instance, one well-known economic study uses an
inferential view to determine which social factors (e.g., segrega-
tion, income inequality) are significantly correlated with economic
mobility [12]. Another study uses a predictive view to estimate
income from phone call records—the significance of each covariate
is less relevant than the model’s overall predictive ability [9]. We
recommend that data science instructors bridge the gap between

traditional computer science and statistics views by including both
predictive and inferential views for statistical modeling.

5.2 Theory and Practice

Both computer science and statistics contribute methods and the-
ory for data science. For instance, computer science teaches practi-
cal software tools and theoretical analysis of runtimes. Statistics
teaches practical modeling techniques and bias-variance theory that
applies across models. When we first launched our data science
course, each of our lessons tended to focus heavily on either theory
or practice. This divide sparked pedagogical discussions amongst
this paper’s co-authors as we developed our course and textbook.
For instance, in our third case study (Section 4.3) we debated how
much to emphasize the theory for random sampling versus the
practical reality of using found data in-the-wild. We moved indi-
vidual lessons towards a closer balance of both theory and practice
as we discussed and iterated on our course. We expect that other
instructors can anticipate similar discussions based on the fact that
theory and practice both have clear roles in data science—for in-
stance, a lesson that strictly focuses on one may be improved by
incorporating other perspective.

5.3 Both Perspectives in Data Science Pedagogy

In our experience, many topics in data science can be approached
through both computer science and statistics perspectives. Al-
though our three case studies cover three specific examples, we
constantly discuss how we might better balance these two disci-
plines across multiple courses.

For example, data scientists often work with tabular data us-
ing the concept of a dataframe. The dataframe was originally de-
signed by statisticians for exploratory data analysis but also serves
as a computational data structure. Instructors can contrast the
dataframe with its database analog, the relation (e.g. [32]).

Relatedly, there is a distinction between the term data type as
used in programming versus in statistics. For instance, survey re-
sponses can be recorded using numbers (e.g., 0 for “no”, 1 for “yes”,
and 2 for “maybe”) or as strings. A statistician would describe this
data type abstractly as categorical, and would not compute the
average even when the data are stored as numbers in a program.
Instructors can discuss how computer science and statistics view
data types differently.

6 CONCLUSION

This paper shares three case studies from our time spent working
closely together on a data science course and textbook. The re-
curring themes we present highlight the different approaches that
computer science and statistics take in teaching data science. These
differences are captured in tradeoffs between explaining the “how”
and “why” of each concept and reflect ongoing debates amongst
experts in the field. We advise data science instructors to seek in-
terdisciplinary views but also understand that it’s difficult to please
everyone—rather than searching for an immediately “perfect” bal-
ance of computing and statistics, instructors can instead welcome
different points of view and improve their courses over time.
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