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Abstract
Instructors of programming courses must manage a vari-
ety of pedagogical dependencies in their teaching materials.
For instance, updating the code used in a single lesson can
require cascading changes to other lessons in the course.
Currently, they must manually maintain these dependen-
cies across many files, which is tedious and error-prone. To
help instructors track pedagogical code dependencies, we
created a system called Codehound that uses static analysis
to automatically detect where functions are introduced and
reused through an entire course. To show how Codehound
can be used, we present three usage scenarios inspired by our
own experiences teaching large data science courses. These
scenarios demonstrate how Codehound can help instructors
create new content, collaborate with staff to refactor existing
content, and estimate the cost of future course changes.
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1 Introduction
To design effective courses, instructors must constantly up-
date and improve their teaching materials. This process is te-
dious and error-prone for those who teach technical courses
that use code, such as intro. to computer science or data sci-
ence. In a typical week, these instructors must manage code

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SPLASH-E ’22, December 05, 2022, Auckland, New Zealand
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9900-5/22/12.
https://doi.org/10.1145/3563767.3568126

across different course materials: e.g., a lecture might intro-
duce example code that students need to reuse for discussion
worksheets, labs, and homework assignments. Each change
that instructors make to their course materials can cause
unforeseen cascading changes to the rest of their course. For
instance, if they decide to remove even a single lecture slide,
they must make sure that the rest of their course materials
do not rely on ideas or example code from the removed slide.
In essence, coding instructors face the challenge of what

some researchers have called “intricate pedagogical depen-
dencies” between their course materials [11]. Unlike tradi-
tional software dependencies where one file runs code from
another, pedagogical dependencies happenwhenever one file
reuses example code that was previously introduced earlier
in the course. In coding-heavy courses such as data science,
each piece of material builds upon and depends on prior ma-
terial, and keeping track of these code dependencies requires
time and effort that could otherwise be used for teaching.

Beyond individual courses, this challenge also appears in
long-form instructional content. For example, CS textbook
authors (e.g. [15, 16]) must maintain pedagogical dependen-
cies of example code that appear in different book chapters.

How can we help instructors manage intricate peda-
gogical dependencies in the code they use for teaching?
To address this question, we created Codehound, a prototype
that allows instructors to track pedagogical dependencies
between code in course materials. Codehound uses static
analysis to automatically figure out where functions are
introduced and reused in a course. It presents this to the
instructor directly within their development environment to
help them ensure that their course materials are consistent
with each other. To demonstrate the capabilities of Code-
hound, we present three example usage scenarios drawn
from our experiences teaching and updating large data sci-
ence courses. These scenarios show that Codehound can
help instructors to create new content, collaborate with TAs
to refactor existing content, and estimate the cost of updates.

2 Related Work
To our knowledge, Codehound is the first system that helps
instructors track code dependencies across course materials.

One set of related work describes systems to help instruc-
tors manage assignments in coding courses, such as those
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Figure 1. Codehound uses static analysis to help instructors track pedagogical dependencies in course materials. A) Instructors
can develop their materials using familiar development environments, such as Jupyter notebooks for data science instructors.
B) As they edit example code in a lesson, Codehound automatically updates a display of functions that this lesson introduces
for the first time in the course. Clicking on a function displays a list of all the files in the course that also use this function.

that help them grade student work by executing and test-
ing code [13, 14, 17], clustering submissions by identifying
student tactics [7], and grading handwritten submissions
[18]. Another set of systems directly help students complete
assignments, for instance by providing automatic feedback
[4, 22], clarifying program outputs [2], and using fuzz testing
to generate test cases [19]. Others describe how instructors
use software tools to manage student submission files [5, 21].
In contrast to this prior work which focuses on the logistics
of running a course, Codehound aims to help instructors
create coding-related instructional materials.

An analogue tomaintaining instructional code comes from
software engineering research [20]. For example, software
maintenance [3] and evolution [8] are classic topics that have
been studied as early as the 1960s. In our context, instructors
write code that they plan to teach to students. However, this
code also needs to be maintained and updated as underlying
computing environments change over the years. For instance,
example code presented in lectures need to be updated when
programming languages and software packages update [11].
Like software engineers who update their code in response
to new specifications, instructors also update code when
they want to change what they teach, for example as they
collaborate and receive feedback from other instructors [12].
Codehound adapts ideas like refactoring [6] from software
engineering and applies them to instructional design.

3 System Design and Implementation
We drew from our own experiences as instructors and from
prior research on the challenges instructors face in managing
code-intensive courses [11] to set two design goals:
D1. Embedded within existing workflows. Instructors

already need to work with a set of familiar software
apps in creating courses, so a system should not require
them to switch to yet another new application.

D2. Leverage sequential course structure. Instructors
order their course content carefully to facilitate learn-
ing, so a system should help them efficiently rearrange
and refactor their lesson sequences.

Our Codehound prototype is implemented as a JupyterLab
extension using Python and Typescript, which lets instruc-
tors use Codehound as a sidebar in the same browser window
as the course materials they are developing (D1). We chose
Jupyter [9] since this is a common way for data science
instructors (like ourselves) to create course materials such
as lectures, assigned readings, and homework assignments:
computational notebooks like Jupyter allow explanatory text
and runnable example code to be interleaved [10]. Note that
our ideas are not specific to Jupyter, though; a similar system
for different target audiences could be implemented in an
IDE like Visual Studio Code or a LaTeX editor like Overleaf.

The Codehound sidebar shows function calls made by the
code in the Jupyter notebook that the user is now editing.
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The key idea is to make the user aware of which calls are new:
i.e., those that have not appeared before in the course (D2).
Showing new function calls alerts the user to the fact that
theymaywant to write explanatory text to introduce the con-
cepts embodied by those functions; otherwise students may
be confused to encounter a function without knowing what
it does. (See Section 4 for more example usage scenarios.)

By default, only new function calls are displayed, and the
sidebar has a toggle for the user to display both new and
old function calls. Codehound also displays the cell number
next to each function call. When a user clicks on the cell
number, their cursor will jump to the corresponding cell
in the notebook. Whenever the user saves their notebook,
Codehound automatically updates the function list to match
the user’s changes. When the user switches to a different
notebook (which usually corresponds to a different lesson in
the course), Codehound automatically switches to showing
the function call list for the newly-opened notebook.
The Codehound sidebar displays only the function calls

in the currently-opened notebook by default. The user can
also select a function to find out what other notebooks in
the course also call that function. To do so, they can click
on the function name in the Codehound sidebar. This causes
Codehound to display a list of notebook names that have
called the function, in the order that the notebooks appear
in the course. This is essentially like navigating a function
call graph in an IDE, except that Codehound is aware of the
order of instructional materials presented in a course (D2).
Codehound’s implementation is summarized in Figure 2.

To understand whether a function call is new or not, Code-
hound requires the instructor to specify the order that stu-
dents will see each notebook in the course (D2). In our cur-
rent prototype this ordering is written in a separate YAML
file, although future iterations of Codehound could automat-
ically parse this ordering from a course’s website or syllabus.
Codehound uses this YAML file to extract the order that

function calls appear in course materials. To do this, Code-
hound parses the Python code in each Jupyter notebook. It
uses the libcst library [1] to construct an abstract syntax
tree for each code snippet. Each time Codehound encounters
a function call, it records the function name, its arguments,
and the notebook where the call appeared. Codehound also
parses function calls within method chain expressions. For
example, for this snippet of pandas data science code:

df.groupby('a').mean()

Codehound extracts both groupby() and mean() calls. This
chaining pattern is very common within data science code.

To figure out whether a function call is new or not, Code-
hound marks each call with the number of times that func-
tion has been called up to that point in the course. If the
function has never been called before, it is considered to be
newly-introduced, since that is the first time students would

Figure 2. To use Codehound, users specify the order that
each piece of content (e.g., a lecture, lab, or homework) is
presented in the course. A) Codehound reads in instruc-
tional code in the same order it appears in the course. B)
Codehound parses the code and extracts each function call
in order of appearance (newly-encountered functions are
shown in bold).

encounter it in the course. Codehound advises the instructor
to write an explanation of what that call does at this point.

Scope and Limitations: Codehound’s approach is most use-
ful in domains where students reuse a relatively-small API
throughout the course, like data science courses that use a
subset of the pandas library. Currently Codehound does not
parse other types of expressions like indexing, slicing, or
boolean mask expressions that appear in introductory data
science courses. A future iteration could use more sophisti-
cated static analysis to extract these types of expressions.

4 Example Usage Scenarios
We present three example usage scenarios for Codehound
to demonstrate its potential capabilities. These scenarios
revolve around a hypothetical instructor named Mel who is
teaching an introductory data science course with a team
of teaching assistants. Each of these scenarios is based off
real-world problems that we have personally encountered in
our experiences teaching and developing course materials.
Note that we and other data science instructors create

courses using a set of Jupyter notebooks to hold lecture
materials, readings, labs, and homework assignments; but
the same ideas could apply to any document format with
code that can be extracted by another program.

4.1 Creating New Course Content
Codehound can help instructors when they are creating new
course content. Let’s say Mel is working on a new lesson
to introduce data cleaning concepts. For this lesson, she
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creates a new lecture that includes both explanatory text
and example code in a Jupyter notebook. At this point in the
course, students have already had practice with the Python
pandas data science library, so Mel wants to apply their
knowledge in the context of data cleaning and reuse pandas
methods that her students are already familiar with. To do
this, she first inserts the notebook into her course’s YAML
syllabus so that Codehound knows the order of her lessons.
As Mel works on her notebook for this new lesson, she

periodically checks the Codehound sidebar. When she writes
a function call that students have already seen in a previous
lesson, that function will not appear in the sidebar’s default
display. This lets Mel verify she is using function calls that
students are already familiar with, to minimize confusion.

AsMel works on her lesson, she eventually writes example
code that calls the melt() method from the pandas API.
Because this function call is new for her students, it suddenly
appears in the Codehound sidebar:

When Mel sees this, she knows she cannot assume that
students will understand this melt() function call at first
glance – Codehound reminds her that she needs to explain
what it does, so she writes an explanation in her lesson.

Later,Melwrites example code that uses the tail()method.
Since this method is relatively simple and common in real-
world usage, Mel thinks that it should have already been
covered by this point in the course. To her surprise, Code-
hound also marks this method as new:

Mel sees this and realizes that she should have put the
tail() method in her previous lecture on pandas, so she ed-
its the previous lecture’s notebook. After making this change,
Mel returns to designing her lesson on data cleaning. Since
tail() has now previously appeared in the course materi-
als, Codehound removes it from its list of newly-introduced
functions. Now Mel can continue working on her lesson.

Codehound is useful here since without it Mel would need
tomanually and continually verify that she is reusing functions
that have previously been introduced in order not to confuse
her students. However, data cleaning uses many different
pandas functions, and checking each function one-by-one is
time-consuming and error-prone. It would be especially dif-
ficult for Mel to see whether a function like melt() is being
introduced for the first time. She would need to manually

look through all of her previous course materials to know
whether melt() is familiar or brand-new for her students.

4.2 Refactoring Existing Course Content
Codehound can also help an instructor who is working with
TAs to refactor (e.g., move around) existing course content.

Let’s say Mel currently has a lesson on gradient descent
in week 5 of her course, but she feels that it makes more
pedagogical sense to move that lesson later in the term to
week 8. To move this lesson, Mel updates her YAML course
syllabus so that Codehound knows the new ordering of her
course material notebooks. The gradient descent lecture de-
fines a function called descent(). Since this lesson used to
appear in week 5, the descent() function is called multi-
ple times throughout lectures and assignments after week
5. After moving her lesson around, now Mel needs to make
sure that descent() is not ever called until week 8 (after the
lesson on gradient descent) or else students will be confused.

Right after moving gradient descent to week 8, Mel opens
her lecture notebook on gradient descent and looks at the
Codehound sidebar. The descent() function does not ap-
pear in the default view of the sidebar since it had been called
in earlier weeks (somewhere between weeks 5 and 8). To see
where it appeared, Mel unchecks the "Show only new calls"
box to see all function calls, not just new ones. When Mel
clicks on the descent() function, Codehound shows a list
of notebooks where that function is currently being called:

She sees there are several notebooks that use descent()
before week 8. Now Mel can make changes to her lectures
in weeks 6 and 7 so they do not use descent(). There are
also a few assignments that appear in weeks 6 and 7 that use
descent(). Since Mel now knows all of the notebooks that
use descent(), she can tell her TAs which assignments need
to also be updated. When her TAs go through assignments,
they can use the Codehound sidebar to find all the cells that
use descent() and make the necessary edits there.

After Mel and her TAs finish refactoring their course ma-
terials, Mel can verify that descent() indeed appears for
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the first time in the gradient descent lecture in week 8 by
seeing it in the Codehound sidebar as a new function call.

4.3 Estimating the Cost of a Potential Course
Update

Like many instructors, Mel constantly looks for ways to
streamline her course content. From experience, she knows
that learning the pd.pivot_table() function is challenging
for students. She has a sense that this function could be cut
out of the course without major changes to other materials,
but she wants to verify whether her intuition is correct.
To estimate the cost of taking out pd.pivot_table()

from her course entirely, Mel can open any notebook in
the course that uses the function. Then she can click on
pd.pivot_table() in the Codehound sidebar list to see the
list of notebooks that currently use this function. She sees
that the function is used in only three notebooks:

Now Mel knows that pd.pivot_table() can be trimmed
out of course materials with updates to only a few note-
books. If she had instead seen that this function was used
in many notebooks throughout the course, then she might
have decided to keep the function in the course.

5 Discussion
Here we propose ways to expand Codehound’s approach to
other tasks that instructors do. We also introduce a broader
vision for courseware engineering tools for instructors.

5.1 Applying More Sophisticated Code Analysis
Codehound demonstrates that even simple static analysis
can help instructors with course materials. What about more
sophisticated analyses? A future version of Codehound could
not only track individual function calls but also other types
of programming constructs like if statements, list compre-
hensions, and other coding idioms. A more sophisticated
analysis could also track higher-level ideas that require sev-
eral function calls. For instance, data scientists use looping
and random sampling together to perform simulations, so a
future Codehound could tell instructors whether a simula-
tion scheme is being shown for the first time in a course.

Since Codehound runs in the instructor’s development en-
vironment (e.g., Jupyter or an IDE), a future version of Code-
hound could also use runtime analysis to surface information
to the instructor. For example, data science instructors often
introduce a dataset that is reused in multiple lessons. If an
instructor edits or reorders their lessons, they also need to
make sure that the dataset is properly introduced when it
appears for the first time. Codehound could use runtime

analysis to inspect variable values, which would let it tell
instructors where a dataset is currently being used in course
materials and where it was introduced for the first time.
One salient observation from our own teaching experi-

ences is that instructors need to manage code across many
types of files and applications. Code not only appears in
scripts and computational notebooks but also in lecture slides
and PDF worksheets. Regardless of where code appears, it
needs to remain consistent with the course sequence. A fu-
ture version of Codehound could let instructors track code
in any text box, regardless of the application it resides in.

5.2 Towards a Vision of Courseware Engineering
One inspiration for Codehound was our observation that
managing and updating a technical course has similarities
with maintaining a large open-source software project. Both
instructors and open-source software maintainers need to
keep track of multiple files that contain code and depend
on each other in subtle ways. Software development tools
help engineers perform routine tasks like refactoring and
linting. However, instructors lack analogous tools that take
into account the pedagogical sequencing of course materials.

We envision Codehound as an example of a broader set of
tools for courseware engineering. Unlike software engineering
projects, technical courses contain code that appear in a set
sequence of lessons. Courseware engineering tools that are
aware of a course’s structure can help automate repetitive
tasks so instructors can have more time to focus on pedagogy.

For example, software engineering tools use code coverage
to automatically tell engineers what parts of a codebase
have not yet been covered by test cases. An analogous idea
for courses is to track concept coverage—instructors often
want their homework assignments to reinforce the ideas
and code introduced in that week’s corresponding lecture. A
tool that is aware of a course’s sequence and structure can
automatically tell instructors whether they wrote code in
lecture that was not covered in the homework, or vice versa.
Courseware engineering tools can not only help instruc-

tors manage their materials but also help students as they
work through homework assignments. Current IDE tools
can show function documentation inline. A similar tool for
students could expand on this idea by also telling students
where the function was previously covered in their course
materials and provide specific examples from lecture that
they can use as reference. This is important because instruc-
tors use course-specific idioms—e.g., where one instructor
might use a for-loop, another might instead use functional
programming. Courseware engineering tools can take this
context into account to help students recall familiar course-
specific examples from prior lectures or assignments.
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6 Conclusion
In this paper we presented Codehound, a prototype sys-
tem that uses static analysis and an embedded notebook UI
to help instructors track pedagogical code dependencies in
course materials. The key insight of Codehound is that or-
der matters—instructors want to make sure that each piece
of course material reinforces previous ideas and code in a
logical way. Codehound’s design provides an example of
how systems can leverage course structure to help coding
instructors plan and refactor instructional content. Using
this prototype as a starting point, we advocate for further
research into courseware engineering tools that take care of
behind-the-scenes logistics in order to let instructors devote
more time to what matters most: teaching students.
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