How Novices Use Program Visualizations to Understand Code
that Manipulates Data Tables

Ylesia Wu*
xw001@ucsd.edu
University of California San Diego
La Jolla, CA, USA

Abstract

As data science and artificial intelligence continue to impact soci-
ety, more and more people are learning how to manipulate data
with code. To support these learners, program visualization tools
automatically generate diagrams to show how code transforms
data, in contrast to tools based on large language models (LLMs)
that primarily focus on textual explanations. Although program
visualization tools are popular among instructors, do novices find
these tools usable and useful for data science programs that often
manipulate datasets with many rows? To address this, we evaluate a
popular, publicly available tool that generates diagrams for Python
pandas code through a randomized, in-lab usability study with 17
data science novices. Despite minimal instruction on how to use
the tool, novices found that program visualizations increased their
confidence in comprehending and debugging code. In addition,
even though the tool sometimes produced diagrams with many
visual elements, participant performance on the study tasks was
not negatively impacted. These findings suggest design guidelines
for program visualization tools to help manage cognitive load for
data science novices. To our knowledge, this is the first empirical
study that investigates how novices use program visualization tools
to understand code that manipulates data tables, and suggests a
future where novices can use automatically generated diagrams as a
complement to LLM tools for effectively understanding unfamiliar
programs in data science.

CCS Concepts

+ Human-centered computing — Empirical studies in HCI.

Keywords

data science education, program visualization tools, novice pro-
grammers

ACM Reference Format:

Ylesia Wu, Qirui Zheng, and Sam Lau. 2025. How Novices Use Program
Visualizations to Understand Code that Manipulates Data Tables. In Proceed-
ings of the 56th ACM Technical Symposium on Computer Science Education V.
1 (SIGCSE TS 2025), February 26-March 1, 2025, Pittsburgh, PA, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3641554.3701959

“Ylesia Wu and Qirui Zheng contributed equally to this work as co-first authors.

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0531-1/25/02
https://doi.org/10.1145/3641554.3701959

Qirui Zheng”
q7zheng@ucsd.edu
University of California San Diego
La Jolla, CA, USA

Sam Lau
lau@ucsd.edu
University of California San Diego
La Jolla, CA, USA

1 Introduction

As data science programs become more common, instructors and re-
searchers are developing a deeper understanding of the differences
between introductory data science and introductory computer sci-
ence (CS1) curricula. One noticeable difference is that unlike many
CS1 courses, introductory data science courses teach students to
use software libraries like the pandas library for Python to work
with datasets containing thousands and even millions of rows [27].
Although many data science courses introduce basic programming
skills like loops and conditionals, they typically spend much more
time covering data manipulation using pandas dataframes, which
represent tables of data [1]. Unlike in CS1 where primitive oper-
ations typically transform single values, common operations on
dataframes like sorting, grouping, and aggregating often transform
multiple data values at once. In cases like making a pivot table, a sin-
gle operation can sometimes even transform the entire dataframe
structure itself. Because of this, data science instructors face the
challenge of teaching novices how complicated software libraries
manipulate datasets that are far too large to display in entirety.

To support introductory data science courses, program visual-
ization tools can automatically generate explanatory diagrams of
data table transformations, following a long history of program vi-
sualization tools for introductory programming courses [42]. These
tools are popular among both instructors and learners. For example,
the Pandas Tutor tool is a publicly available program visualization
tool for data science and it is already used by 20,000 people across
160 countries per year [22]. While these tools have been designed
to support instructors who teach introductory data science courses,
there is a lack of understanding about whether data science novices
are actually able to use these tools. This leads to the overarching re-
search question for this paper: How do data science novices use
program visualization tools like Pandas Tutor to understand
code that transforms data tables?

To address this question, we conducted a within-subject, think-
aloud study with 17 data science novices. Participants were pre-
sented with a series of pandas snippets demonstrating common
data manipulation tasks in a computational notebook and were
asked to explain what each snippet did. Each participant completed
tasks using both the Pandas Tutor tool and a baseline condition with
a standard Jupyter notebook environment. Participants were more
confident in their responses using the Pandas Tutor tool without
decrease in task accuracy or time to completion. Interviews with
our participants revealed that novices found the tool usable and
useful for verifying their understanding of code that transforms
data tables. Participants also highlighted features of the tool that
enabled them to more easily reason about large datasets and man-
age the additional cognitive load of interpreting diagrams about

https://doi.org/10.1145/3641554.3701959
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3641554.3701959

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

code. From these findings, we derive design recommendations for
program visualization tools that support data science learners: tools
should be embedded within learner workflows; tools should reduce
the effort required for novices to compare intermediate and final
states of data tables; and tools should reduce cognitive load through
interactions that allow users to selectively filter visual marks. In
sum, this work contributes:

o The first empirical evaluation of a program visualization tool
for data science novices (to our knowledge).

e Insights into how data science novices can use program
visualization tools like Pandas Tutor to understand code that
transforms data tables.

e Design recommendations for future program visualization
tools that support data science learners.

2 Related Work

To meet the ever-increasing demand for studying resources in com-
puter education, especially for beginning programmers, visualiza-
tion tools have been developed to serve as a complement to tradi-
tional classroom teaching or self-studying of computer program-
ming. These tools tackle different aspects of computer education
and serve the purposes of instruction, illustration, explanation,
clarification, or debugging [42].

Many visualization tools intended to facilitate the learning of
general programming are designed in the format of a visual de-
bugger. Some examples of such tools are Online Python Tutor [11],
UUhistle [43], Ville [35], The Teaching Machine [4], Jeliot 2000 [26],
Jeliot 3 [30, 31], Evizor [29], and VIP [19, 44]. Among these tools,
Ville and VIP are especially focused on pedagogy by supporting
teacher-defined examples, and Jeliot 2000 and Jeliot 3 create vi-
sualizations that make use of animation in addition to diagram
generation. Evaluations of these tools come from anecdotes, exper-
imental studies, qualitative studies, and surveys. Anecdotal eval-
uations are used to suggest ease-of-use [11], likability [5, 6], and
usefulness for self-study [5, 6]. Experimental studies are generally
focused on improvement on a specified set of tasks [2, 36]. Quali-
tative studies, including observational and comparative, examine
performance [18, 26], ways of usage [13, 34], helpfulness [16], in-
crease in motivation [40], effect on collaboration [32], and student
preference [20]. Surveys mostly collect feedback regarding overall
impression [14, 21], likability [5, 6], usefulness for self-study [5, 6],
and helpfulness for answering questions [29]. For example, evalua-
tions of UUhistle are specifically tied to visual program simulation
exercises and were performed through observational and experi-
mental studies [41].

Many visualization tools are focused on a specific subarea of
computer science. For example, MemStep is dedicated to visualizing
memory layout and interactively involves the user in the creation
of visualizations [24]. CFlow is a tool developed for instructors to
view aggregated semantics of code written by students [45]. CS-
mart offers practice opportunities by showing visualization first
and then prompting the user to type in code [10]. PlanAni creates
role-based animation, specifically focusing on the types of vari-
ables [37]. Evaluation of these tools are done through experimental
studies, qualitative studies, and surveys. Experimental studies focus
on performance and understanding improvement [7, 24, 37, 38].

Ylesia Wu, Qirui Zheng, and Sam Lau

Qualitative studies concern accuracy and reliability [45]. Surveys
concern metrics such as user experience, overall impression, effec-
tiveness in helping understanding, correcting misconceptions, and
increasing user preparedness [10, 24].

As the significance of data science has been increasingly recog-
nized and enrollment in data science undergraduate and graduate
programs has escalated, visualization tools specifically designed
to facilitate the learning of tabular data manipulation have also
been developed alongside computer programming. Such tools or
projects work with tabular data in spreadsheets, R, or SQL and
either create intermediate visualizations for data manipulations or
create representations of aggregated data information. Examples
include Tweaklt [23], Unravel [39], Wrangler [15], Data Tween-
ing [17], Datamations [33], QueryVis [25], SQLVis [28], Taggle [9],
Digestable [3], and VisuLab [12]. Evaluations found that these
tools increase perceived usefulness [15, 23, 39], perceived help-
fulness [28, 39], user confidence [23], understanding and retaining
knowledge [17, 33], and task performance [15, 17, 25, 28].

These previous tools are either intended for users with substan-
tial amounts of programming experience or require users to switch
to a different application to visualize their programs. In contrast,
Pandas Tutor is embedded inside Jupyter notebooks which enables
our study to investigate how novices make use of program visu-
alization tools in their standard programming environment and
workflows.

3 Overview of Pandas Tutor System

Pandas Tutor is a visualization tool for the Python pandas library
that executes user-defined data manipulation code. Since Pandas
Tutor was already introduced in previous work [22], we will only
provide an overview of its most relevant features for this paper and
introduce additional features that were added to enable the work of
this paper. When a user enters Python pandas code into Pandas Tu-
tor, the tool will automatically generate before-and-after diagrams
for the last expression of the user’s code snippet. If the expression
contains multiple function calls, which is common for pandas code,
Pandas Tutor will visualize each function call separately, with a
diagram for each call. Pandas Tutor diagrams display the dataframe
before a transformation (on the left), the dataframe after the trans-
formation (on the right), and annotations that depict how the data
was transformed. For example, in Figure 1b, Pandas Tutor adds
colors to each row to show how rows are grouped together. Pandas
Tutor diagrams also support a basic form of interactivity: if a user
hovers their cursor over a row or column of a dataframe, Pandas
Tutor only displays the annotations for the hovered data.

Pandas Tutor was originally released as a standalone webpage
where users needed to copy-paste their code into a code editor
embedded on the page. However, if a user had a dataset they wanted
to explore, they would need to copy-paste the entire dataset as a
string at the top of the Pandas Tutor code editor in order to import
the data, since the Pandas Tutor website doesn’t allow network
access. This barrier proved too difficult for novices to overcome in
pilot studies and made the tool difficult to evaluate. To address this,
we implemented an integration of Pandas Tutor into the Jupyter
notebook programming environment. This allows users to add a

How Novices Use Program Visualizations to Understand Code that Manipulates Data Tables

%%pt
@ student.groupby('Student') [['Percentage']].mean()

.groupby('Student")

Student | Percentage Student Percentage

0| Ylesia 84 0 Ylesia 84

1 Sara 90 1 Sara 90
2 Sara 96 2 Sara 96

3 | Ylesia 73 3 Ylesia 73

[['Percentage']]

AN

Student Percentage Percentage

@ 0 Ylesia 84 0 84

1 Sara 90 1 90
2 Sara 96 2 96
| 3 Ylesia 73 3 73
E .mean()
Percentage Percentage
0 84 Student
@ 1 20 Sara 93
2 96 Ylesia 78.50
3 78

Figure 1: To support the user study in this paper, we imple-
mented an extension to Pandas Tutor to render diagrams
directly inside of Jupyter notebooks by adding a single line
of code to the top of a code cell (A). Since the pandas expres-
sion in this example contains three dataframe operations,
Pandas Tutor displays three diagrams (B, C, D).

single line of code to the top of a code cell (%%pt) to render a Pandas
Tutor diagram directly in their notebook, depicted in Figure 1.

4 Methods

With interest in understanding how novices use such a tool, a user
study with after-session interviews was conducted to explore their
experiences, challenges, and perceptions.

Participants. Participants were undergraduate students aged
18-22 recruited from data science courses at our university, a public
research-focused university in North America. To recruit partic-
ipants, we posted email announcements for students who were
enrolled in lower-division introductory data science courses. Par-
ticipants received a $20 gift card for their participation. A total of
17 participants (n=17) were recruited. Most participants had mini-
mal experience with Python, with 11 participants having only one
year of Python programming experience, 5 participants having two
years of experience, and 1 participant having more than two years
of experience. To control for background knowledge of pandas, we

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

filtered for participants who had only taken one course that used
the pandas library prior to the study.

Tasks. Participants completed tasks in a Jupyter notebook which
contained two example data analyses using different datasets. Each
data analysis contained three code snippets that performed com-
mon data manipulation steps in Pandas, such as sorting values in a
DataFrame, aggregating rows to compute summary statistics, merg-
ing DataFrames, compting pivot tables, and filtering rows. For each
task, participants read one of the code snippets and were asked to
explain the code in plain English. Since there were two analyses
with three snippets each, participants completed a total of six tasks.
Participants were given tasks both with Pandas Tutor and without
Pandas Tutor (the baseline condition). We randomized the order
in which participants used Pandas Tutor and the baseline. We also
randomized the task order to mitigate learning effects.

After completing the code description tasks, participants were
given an open-ended code writing task where they were given a
question to answer about the data and were asked to write code
to produce the desired result. For this task, we provided skeleton
code, but participants were not required to use it. Participants were
able to use Pandas Tutor to complete the code writing task.

Since all participants already had taken one course that used
pandas, we deliberately designed the tasks to make use of functions
and pandas idioms that participants had not previously before.
During the study, participants were asked to explain their thought
process when approaching and understanding code. Participants
were also allowed to search the Web and documentation during the
study. Our complete task code is available on GitHub!.

Protocol. The user study was conducted via 1-hour in-person
interviews with participants. At the start of the study, the experi-
menter explained the study to the participant and helped the partic-
ipant to open the Jupyter notebook for the study. Then, participants
were given 40 minutes to complete the code description tasks, with
20 minutes allocated for each data analysis. For each task, partici-
pants were asked to write their final description of the code and
record their confidence on a scale from 1-7 using an online form.
Then, participants were given 10 minutes to complete the code
writing task. For the final part of the user study, the experimenter
conducted a semi-structured interview with the participant, ask-
ing them to reflect on how they used Pandas Tutor and what they
found easy or difficult to use about the tool. We recorded participant
screens and audio.

5 Quantitative Results

This section presents quantitative results from our user study. Be-
cause the primary objective of our study was to develop deeper
understanding of how novices use program visualization tools, we
did not recruit a large enough sample size to obtain statistically
significant differences between conditions. We report these pre-
liminary quantitative findings here in order to point out potential
measures for a future larger-scale study.

Participant responses to the code description task were scored
for accuracy on a scale of 1-5 by two members of our research
group who are not authors of this paper. The two research group
members scored each response, then discussed discrepancies until

!https://github.com/dstl-lab/Novice-Program-Visualizations-Usage

https://github.com/dstl-lab/Novice-Program-Visualizations-Usage

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

Accuracy

Baseline PT
Condition

Baseline PT
Condition

Figure 2: Participants were approximately equally accurate
in baseline and Pandas Tutor conditions (left), and reported
more confidence in their responses when using Pandas Tutor
(right). Error bars show 95% confidence intervals.

Useful for understanding? Easy to create visualizations?

124
24—
10
10 —
8
g e
8 6 1 °]
4+ 41
5] 24—
0 .- 0
6 7

=4
N A
w4
g
Ul
o
~

12345
Rating

Figure 3: Participants generally found Pandas Tutor useful
and easy to use.

agreement was reached. In the Pandas Tutor condition, participants
obtained an average accuracy score of y = 3.51, (¢ = 1.35), while
participants in the baseline condition obtained an average accuracy
score of p = 3.67, (o = 1.44), as shown in Figure 2 (left).

Participants also took approximately the same amount of time to
complete tasks in both conditions. Baseline with y = 4.75 (o = 2.44)
minutes per task, and a ¢ = 4.91 (¢ = 3.32) minutes per task for
Pandas Tutor.

When using Pandas Tutor, participants reported an average
confidence of y = 5.78 (0 = 1.14), which was higher than their
confidence in the baseline condition y = 5.24 (¢ = 1.29), shown in
Figure 2 (right). Participants also found Pandas Tutor useful and
easy to use overall, as shown in Figure 3.

6 Qualitative Results

This section presents findings from participants’ verbal responses
as they worked on tasks as well as from post-task interviews. To
derive themes from the interviews, the paper authors met regularly
to watch participant videos and discuss notes together. Throughout
this process, we iteratively came up with a set of themes, using
grounded theory and an inductive approach [8]. Our findings are
summarized in Table 1 and elaborated below.

Ylesia Wu, Qirui Zheng, and Sam Lau

6.1 In-notebook visualizations were usable and
useful

Overall, participants found the in-notebook visualizations to be easy
to use. Although Pandas Tutor also exists as a webpage, users in a
previous pilot study found it challenging to transfer their data from
their notebooks into Pandas Tutor. In contrast, novices were able to
create visualizations in their notebooks with minimal instruction
and without any prior experience using the tool (P1-P17).

Participants also found the visual annotations provided by the
tool to be helpful. For example, the groupby-aggregate operation
is relatively trickier for novices to understand, as a pure Python
implementation typically requires a for loop over all unique values
of a column. One participant commented: "My thought process here
was since just looking at the colors, we can just assume that they’re
going to be groups given how the visualization is." (P7). Another
participant noted, "Yeah, since you actually do [the groupby and ag-
gregate] step by step, I'm like, oh, I get it" (P4). Pivot tables are also
often challenging for novices to understand since they restructure
the entire dataframe. Participants mentioned that Pandas Tutor was
helpful "especially for pivot table [...] since I could see the arrows
for each argument, it has a different arrow and I can understand it
better from that." (P3).

6.2 Using visualizations to verify assumptions

Participants used the visualizations generated by Pandas Tutor to
confirm their understanding of the code. They appreciated that
Pandas Tutor displayed a visualization for each step within an
expression with multiple function calls (e.g., both function calls in
df.groupby(...).sum()), stating that the “step-by-step process”
(P1, P4, P8-P10, P13, P16) helped them understand the code. One
participant remarked:

“Actually I think the reason why I feel more confident
is because of the visualization. Good visualization
gives me more hints and gives me a clear understand-
ing of what’s going on in this defined function. But
with pure code, I have to imagine a graph and the
changes to that graph in my mind.” (P1)

This example points to a tension for novices: even though novices
felt that seeing the intermediate outputs would help them under-
stand the program, they did not choose to do so unprompted in
the baseline conditions and only examined intermediate outputs
when Pandas Tutor visualized them (P1-P17). Even when novices
knew the steps they should take to develop confidence in their
understanding of the code, they perceived that the effort required
to do so was too high. Here, tools like Pandas Tutor can lower the
effort needed for novices to double-check their assumptions about
the code.

6.3 Beyond the default table output

When the pandas library displays a dataframe, it shows the first few
rows and the last few rows which is similar to other dataframe li-
braries (e.g. data. frame in R). Pandas Tutor does the same, but also
attempts to selectively show rows from the middle of the dataframe
by identifying rows with annotations. Additionally, Pandas Tutor
allows users to interactively show rows that were originally hidden

How Novices Use Program Visualizations to Understand Code that Manipulates Data Tables

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

Finding

Description

Representative Quote

In-notebook visualizations were
usable and useful (Section 6.1)

Participants appreciated that Pandas Tutor
visualized code within their familiar notebook
environment, and found the tool easy to use and
useful with minimal instruction.

"Yeah, since you actually do [the groupby and
aggregate] step by step, 'm like, oh, I get it (P4)

Visualizations helped to verify
assumptions (Section 6.2)

Pandas Tutor lowered the effort required to
visualize intermediate program results, which
gave novices more confidence in their
understanding of code.

"Good visualization gives me more hints and gives
me a clear understanding of what’s going on." (P1)

Revealing normally-hidden table
rows can highlight salient
information (Section 6.3)

Participants pointed out that the default pandas
output only shows the top and bottom rows of a
dataframe, when the middle rows of the
dataframe can contain relevant information.

"It’s not that clear what has happened within each
step since there might be 1,010,000 rows of infor-
mation inside [hidden in the dataframe output]."
(P8)

Visualization tools can generate
complicated diagrams, but
interaction can help users manage
cognitive load (Section 6.4)

In more complex cases, Pandas Tutor generated
diagrams with many visual elements (e.g.
arrows), which novices found overwhelming.
However, they found that interactions that
enabled selective filtering of visual elements
were helpful for understanding.

"I see when you put it like this, it looks very com-
plicated, but as soon as you put the allow hovers,
the hovers make it a lot easier" (P11)

Limitations of the tool (Section 6.5)

Pandas Tutor was reported by novices to be
better for understanding code rather than
writing code because the tool lacked direct
support for debugging.

"I think it’s better for checking instead of writing"
(P4)

Table 1: An in-lab usability study with 17 data science novices found that Pandas Tutor was usable and useful. This work
highlights how novices used program visualization tools to understand code and suggests guidelines for future tool developers.

in the dataframe output by dragging a handle. Participants specifi-
cally mentioned this feature as useful (P2, P8, P11). One participant
stated, "It is nice and intuitive this thing to show, because a lot of
the times when I'm doing code, I try to get the rows, but 'm not
sure if I'm right in the middle. Just seeing the top and bottom [of
the dataframe] doesn’t guarantee I'm right." (P11). Another partici-
pant mentioned that the default behavior of pandas reduced their
self-confidence in their own ability to write code:

“I think I am not that confident. I went to office hour
every week before I submit the homework, even if
my results seem reasonable. It’s not that clear what
has happened within each step since there might be
1,010,000 rows of information inside [hidden in the
dataframe output]. So you don’t know what is within
the middle of the row because you can’t read all of
the data,” (P8)

All participants knew how to use pandas to view the middle
rows of a dataframe. However, no one in the baseline conditions
chose to do so, even though they perceived that this would help
them develop understanding of the code and data. This is another
example of how tools like pandas can enable novices to check their
understanding of code using methods that they already prefer.

6.4 Managing cognitive load with interaction

Although participants generally liked using Pandas Tutor, they
also pointed out that its output could be overwhelming with many

visual marks. For example, one participant noted, "And also for, I
think sorting is kind of confusing. It gets really cluttered with all
the arrows" (P4). This issue was especially evident for operations
that manipulated all the dataframe values like making a pivot table,
as another participant mentioned, "It looks very complicated with
many arrows" (P11). Visualization tools like Pandas Tutor strive
for completeness, which means their generated diagrams can have
many visual marks and thus incur a high cognitive load for novices.

However, participants also noted that the interactions imple-
mented in Pandas Tutor made it easier to understand the code. For
example, participants liked hovering over rows of the dataframes
to only display the arrows associated with those rows (P5, P7, P8,
P11, P17). One participant commented, "I see when you put it like
this, it looks very complicated, but as soon as you put the allow
hovers, the hovers make it a lot easier because when I saw this for
the first time, I was like, it’s a lot" (P11). In general, novices found
interaction useful for filtering the number of visual elements on
screen.

6.5 Limitations of Pandas Tutor

Although participants generally found Pandas Tutor helpful, it can
only generate visualizations for code that does not have syntax or
runtime errors. Due to this limitation, participants found Pandas
Tutor was more useful for debugging code rather than writing
code from scratch (P3, P4, P8, P10). Syntax and runtime errors are

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

common when writing code, and these errors prevent Pandas Tutor
from generating a diagram.

Other participants pointed out that Pandas Tutor did not show
all the steps they wanted for certain operations. This was most
commonly noted when using groupby with a custom function (P4)
since Pandas Tutor does not step into function bodies.

7 Discussion

In this section, we describe the limitations of our study design and
reflect on our findings to draw more general guidelines for program
visualization systems for data science.

7.1 Study Limitations

The conclusions we draw from this work are limited by the tasks
and sample of participants that took part in the study. The pandas
library is extensive, and our study was limited to a relatively small
subset of its functionality. It is likely that the usefulness of Pandas
Tutor will vary depending on the specific function being visualized.
When a function is not directly supported by Pandas Tutor, the tool
still provides a side-by-side display of the dataframe before and after
the transformation but does not add annotations such as arrows
or colors. Although we did not study the usefulness of this display
with our participants, some features are still available, including the
ability to reveal more rows in the dataframe by dragging a handle.
We speculate that Pandas Tutor output for unsupported functions
will be perceived as more useful than the baseline output but less
useful than the output for supported functions. Lastly, our study
participants were all undergraduates, whereas actual users of the
tool might also include adult learners, graduate students, and K-12
students.

7.2 Design guidelines for program visualization
tools in data science

Our study highlights general design guidelines for tools that assist
data scientists through program visualization.

Tools should be embedded within existing user workflows. Pilot
studies leading up to this work used Pandas Tutor as a standalone
webpage. This approach proved too difficult for novices, as they
needed to export their data from their notebooks and then import
it into the online tool to visualize their programs. By integrating
Pandas Tutor outputs directly into participant notebooks, usability
improved substantially, making this study feasible.

Tools should enable comparison of intermediate results. The novices
in our user study generally believed that visualizing intermediate
results would be helpful for understanding longer expressions of
code. However, to our surprise, they almost never chose to visualize
intermediate results in the default Jupyter notebook environment.
They perceived this process as too effort-intensive — it would re-
quire them to comment out lines of code, create temporary vari-
ables, print out the intermediate table outputs, and then undo all
these changes to revert to the original, unmodified code. One of the
main reasons novices felt Pandas Tutor increased their confidence
was that Pandas Tutor automatically visualized these intermediate
results without extra effort and displayed the entire step-by-step
process on the screen at once without requiring additional inter-
actions from the user. Therefore, we recommend that future tools

Ylesia Wu, Qirui Zheng, and Sam Lau

designers make it easy for users to see and compare intermediate
results.

Tools should include features to manage cognitive load. The hover
feature in Pandas Tutor was initially designed to help instructors
present diagrams to students. However, novices in our study re-
purposed this feature to reduce the number of visual marks on the
screen at one time, a use case we had not anticipated. We attribute
the use of this feature to our finding that the output of tools like Pan-
das Tutor can be overwhelming, which highlights the importance
of allowing users to selectively filter and abstract visual outputs.
Therefore, we recommend that tool designers carefully consider
scenarios where their tools may display many visual elements si-
multaneously and provide interactions that enable users to manage
cognitive load effectively.

7.3 Complementing LLM tools

Tools like Pandas Tutor can serve as useful complements to LLM
tools such as ChatGPT and Copilot, which can already generate
accurate code for data analysis. However, one limitation of LLM
tools is that their code can be incorrect in subtle ways. This limita-
tion is particularly relevant in data analysis, where code can often
run without errors but lack semantic meaning. For example, it is
not uncommon for datasets to encode missing values with dummy
values. Calculating the mean of a column with this encoding will
not raise an error, but such a calculation should not be used for
analysis.

Data scientists who want to use an LLM for programming still
need to verify that the LLM output is correct and makes sense in
the context of their data. Here, tools like Pandas Tutor can comple-
ment the output of an LLM by enabling users to generate code and
then check that the outputs make sense in the context of the data
analysis.

Additionally, program visualization tools can be further aug-
mented with explanations generated by an LLM. Such a tool could
not only provide novices with helpful diagrams for their code but
also add annotations to these diagrams using an LLM. This would
further help users manage cognitive load by offering both visual
and textual explanations of the code.

8 Conclusion

This paper presents an evaluation of a program visualization tool
for data science called Pandas Tutor, which visualizes code using the
Python pandas library. A first-use, in-lab usability study found that
Pandas Tutor was both usable and useful for data science novices
as they worked with unfamiliar data cleaning code. Overall, using
Pandas Tutor increased novices’ confidence in their understanding
of code without decreasing their task performance. Our study sug-
gests that program visualization tools can be valuable for novices
working with data science code written by others. We envision a
future where novices will use program visualization tools in tan-
dem with LLM tools to not only generate code but also verify its
correctness in the context of their data analysis.

References

[1] Ani Adhikari, John DeNero, and Michael I Jordan. 2021. Interleaving computa-
tional and inferential thinking: Data science for undergraduates at. Harvard Data
Science Review 3, 2 (2021).

How Novices Use Program Visualizations to Understand Code that Manipulates Data Tables

[9

=

[10]

(11

[12

(13

[14

[16

[17

[18

[19

[20

[21

[22

[23

[24

]

]

]

]

Tuukka Ahoniemi and Essi Lahtinen. 2007. Visualizations in Preparing for
Programming Exercise Sessions. Electronic Notes in Theoretical Computer Science
178 (07 2007), 137-144. https://doi.org/10.1016/j.entcs.2007.01.043

David Borland and David Gotz. 2022. Digestable: Condensed Views of Tabular
Data. https://api.semanticscholar.org/CorpusID:252991357

M.P. Bruce-Lockhart and Theodore Norvell. 2000. Lifting the hood of the com-
puter: program animation with the Teaching Machine, Vol. 2. 831 - 835 vol.2.
https://doi.org/10.1109/CCECE.2000.849582

Michael Bruce-Lockhart and Theodore Norvell. 2007. Developing Mental Models
of Computer Programming Interactively Via the Web. S3H-3. https://doi.org/10.
1109/FIE.2007.4418051

Michael Bruce-Lockhart, Theodore Norvell, and Yiannis Cotronis. 2007. Program
and Algorithm Visualization in Engineering and Physics. Electr. Notes Theor.
Comput. Sci. 178 (07 2007), 111-119. https://doi.org/10.1016/j.entcs.2007.01.040
Pauli Byckling and Jorma Sajaniemi. 2005. Using Roles of Variables in Teaching:
Effects on Program Construction. In Proceedings of the 17th Workshop of the
Psychology of Programming Interest Group. University of Sussex, University of
Sussex, Sussex, UK. http://www.cs.joensuu.fi/~pbyckli/ P.O.Box 111, 80101
Joensuu, Finland.

Juliet Corbin and Anselm Strauss. 2015. Basics of qualitative research. Vol. 14.
sage.

Katarina Furmanova, Samuel Gratzl, Holger Stitz, Thomas Zichner, Miroslava
Jaresova, Alexander Lex, and Marc Streit. 2019. Taggle: Scalable Visualization
of Tabular Data through Aggregation. Information Visualization 19, 2 (2019),
114-136. https://doi.org/10.1177/1473871619878085

Roger Gajraj, Margaret Bernard, Malcolm Williams, and Lenandlar Singh. 2011.
Transforming Source Code Examples into Programming Tutorials.

Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-Based Program Visu-
alization for CS Education. In Proceedings of the 44th ACM Technical Symposium
on Computer Science Education (SIGCSE 2013). ACM. https://doi.org/10.1145/
2445196.2445368

Hans Hinterberger. 2010. The VisuLab: An Instrument for Interactive, Comparative
Visualization. Technical Report 682. ETH Zurich, Department of Computer
Science. https://doi.org/10.3929/ethz-a-006869932 ETH Bibliography.

Essi Isohanni and Maria Knobelsdorf. 2010. Behind the curtain: students’ use of
VIP after class. In Proceedings of the Sixth International Workshop on Computing
Education Research (Aarhus, Denmark) (ICER ’10). Association for Computing
Machinery, New York, NY, USA, 87-96. https://doi.org/10.1145/1839594.1839610
Erkki Kaila, Teemu Rajala, Mikko-Jussi Laakso, and Tapio SALAKOSKI. 2009.
Effects, Experiences and Feedback from Studies of a Program Visualization Tool.
Informatics in Education 8 (04 2009). https://doi.org/10.15388/infedu.2009.02
Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-
gler: interactive visual specification of data transformation scripts. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (Vancouver,
BC, Canada) (CHI ’11). Association for Computing Machinery, New York, NY,
USA, 3363-3372. https://doi.org/10.1145/1978942.1979444

Osku Kannusmaki, Andrés Moreno, Niko Myller, and Erkki Sutinen. 2004. What
a Novice Wants: Students Using Program Visualization in Distance Programming
Course. Proceedings of the Third Program Visualization Workshop (01 2004).
Meraj Khan, Larry Xu, Arnab Nandi, and Joseph M. Hellerstein. 2017. Data
tweening: incremental visualization of data transforms. Proc. VLDB Endow. 10, 6
(feb 2017), 661-672. https://doi.org/10.14778/3055330.3055333

Mikko-Jussi Laakso, Teemu Rajala, Erkki Kaila, and Tapio Salakoski. 2008. The
Impact of Prior Experience in Using a Visualization Tool on Learning to Program.
IADIS International Conference on Cognition and Exploratory Learning in Digital
Age, CELDA 2008 (01 2008).

Essi Lahtinen and Tuukka Ahoniemi. 2007. Annotations for Defining Interactive
Instructions to Interpreter Based Program Visualization Tools. Electron. Notes
Theor. Comput. Sci. 178 (jul 2007), 121-128. https://doi.org/10.1016/].entcs.2007.
01.041

Essi Lahtinen, Tuukka Ahoniemi, and Anniina Salo. 2007. Efiectiveness of Inte-
grating Program Visualizations to a Programming Course. (11 2007).

Essi Lahtinen, Hannu-Matti Jarvinen, and Suvi Melakoski-Vistbacka. 2007. Tar-
geting program visualizations. ACM SIGCSE Bulletin 39, 256-260. https:
//doi.org/10.1145/1268784.1268858

Sam Lau, Sean Kross, Eugene Wu, and Philip J. Guo. 2023. Teaching Data Science
by Visualizing Data Table Transformations: Pandas Tutor for Python, Tidy Data
Tutor for R, and SQL Tutor. In Proceedings of the 2nd International Workshop
on Data Systems Education: Bridging Education Practice with Education Research
(Seattle, WA, USA) (DataEd "23). Association for Computing Machinery, New
York, NY, USA, 50-55. https://doi.org/10.1145/3596673.3596972

Sam Lau, Sruti Srinivasa Srinivasa Ragavan, Ken Milne, Titus Barik, and Advait
Sarkar. 2021. Tweaklt: Supporting End-User Programmers Who Transmogrify
Code. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems (Yokohama, Japan) (CHI °21). Association for Computing Machinery, New
York, NY, USA, Article 311, 12 pages. https://doi.org/10.1145/3411764.3445265
Michelle Le Pham, Anna Nguyen, and Rebecca Schreib. 2024. MemStep: An
Interactive Tool for Constructing and Visualizing the Run-Time Memory Layout

[25

[26

[28

[29]

[30

w
—

[32

[33

[34

@
i

[36

[37

[38

@
20,

[40]

(41

[42]

[45

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

of Java Programs. In Proceedings of the 29th Annual Conference on Innovation
and Technology in Computer Science Education (ITiCSE 2024). ACM, Milan, Italy.
https://doi.org/10.1145/3649217.3653532

Aristotelis Leventidis, Jiahui Zhang, Cody Dunne, Wolfgang Gatterbauer, HV.
Jagadish, and Mirek Riedewald. 2020. QueryVis: Logic-based Diagrams help
Users Understand Complicated SQL Queries Faster. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data (Portland, OR,
USA) (SIGMOD °20). Association for Computing Machinery, New York, NY, USA,
2303-2318. https://doi.org/10.1145/3318464.3389767

Ronit Levy, Mordechai Ben-Ari, and Pekka Uronen. 2003. The Jeliot 2000 program
animation system. Computers & Education 40 (01 2003), 1-15. https://doi.org/10.
1016/S0360-1315(02)00076-3

Wes McKinney and PD Team. 2015. Pandas-Powerful python data analysis toolkit.
Pandas—Powerful Python Data Analysis Toolkit 1625 (2015).

Daphne Miedema and George Fletcher. 2021. SQLVis: Visual Query Represen-
tations for Supporting SQL Learners. In 2021 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC). 1-9. https://doi.org/10.1109/
VL/HCC51201.2021.9576431

Jan Moons and Carlos Backer. 2013. The design and pilot evaluation of an
interactive learning environment for introductory programming influenced by
cognitive load theory and constructivism. Computers & Education 60 (01 2013),
368-384. https://doi.org/10.1016/j.compedu.2012.08.009

Andrés Moreno and Niko Mylle. 2003. PRODUCING AN EDUCATIONALLY EF-
FECTIVE AND USABLE TOOL FOR LEARNING, THE CASE OF JELIOT FAMILY.
ACM Transactions on Programming Languages and Systems - TOPLAS (01 2003).
Andrés Moreno, Niko Myller, Erkki Sutinen, and Mordechai Ben-Ari. 2004. Visu-
alizing programs with Jeliot 3 (AVI '04). Association for Computing Machinery,
New York, NY, USA, 373-376. https://doi.org/10.1145/989863.989928

Niko Myller, Roman Bednarik, Erkki Sutinen, and Mordechai Ben-Ari. 2009.
Extending the Engagement Taxonomy: Software Visualization and Collaborative
Learning. TOCE 9 (01 2009).

Xiaoying Pu, Sean Kross, Jake M. Hofman, and Daniel G. Goldstein. 2021. Data-
mations: Animated Explanations of Data Analysis Pipelines. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan)
(CHI °21). Association for Computing Machinery, New York, NY, USA, Article
467, 14 pages. https://doi.org/10.1145/3411764.3445063

Teemu Rajala, Erkki Kaila, Mikko-Jussi Laakso, and Tapio Salakoski. 2009. Effects
of Collaboration in Program Visualization. https://api.semanticscholar.org/
CorpusID:202706336

Teemu Rajala, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski. 2007. VILLE:
a language-independent program visualization tool. https://api.semanticscholar.
org/CorpusID:58796028

Teemu Rajala, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski. 2008. Effec-
tiveness of Program Visualization: A Case Study with the ViLLE Tool. Jour-
nal of Information Technology Education: Innovations in Practice 7 (01 2008).
https://doi.org/10.28945/195

Jorma Sajaniemi and Marja Kuittinen. 2003. Program animation based on the roles
of variables. In Proceedings of the 2003 ACM Symposium on Software Visualization
(San Diego, California) (SoftVis 03). Association for Computing Machinery, New
York, NY, USA, 7-ff. https://doi.org/10.1145/774833.774835

Jorma Sajaniemi and Marja Kuittinen. 2005. An Experiment on Using Roles of
Variables in Teaching Introductory Programming. Computer Science Education
15 (2005), 59 - 82. https://api.semanticscholar.org/CorpusID:14724609

Nischal Shrestha, Titus Barik, and Chris Parnin. 2021. Unravel: A Fluent
Code Explorer for Data Wrangling. In The 34th Annual ACM Symposium on
User Interface Software and Technology (Virtual Event, USA) (UIST °21). As-
sociation for Computing Machinery, New York, NY, USA, 198-207. https:
//doi.org/10.1145/3472749.3474744

Kimmo Sivula. 2005. A Qualitative Case Study on the Use of Jeliot 3. Master’s
thesis. University of Joensuu, Department of Computer Science. https://cs.uef.fi/
pub/Theses/2005_MSc_Sivula_Kimmo.pdf

Juha Sorva. 2012. Visual Program Simulation in Introductory Programming Educa-
tion. Ph.D. Dissertation.

Juha Sorva, Ville Karavirta, and Lauri Malmi. 2013. A Review of Generic Pro-
gram Visualization Systems for Introductory Programming Education. ACM
Transactions on Computing Education 13, 4 (Nov. 2013), 15:1-15:37. https:
//doi.org/10.1145/2490822 Article 15.

Juha Sorva and Teemu Sirkid. 2010. UUhistle - A software tool for visual program
simulation. (10 2010), 49-54. https://doi.org/10.1145/1930464.1930471

Antti T. Virtanen, Essi Lahtinen, and Hannu-Matti Jarvinen. 2005. VIP, a Visual
Interpreter for Learning Introductory Programming with C++. In Kolin Kolistelut
- Koli Calling 2005 Conference on Computer Science Education. Koli, Finland, 125-
130.

Ashley Ge Zhang, Xiaohang Tang, Steve Oney, and Yan Chen. 2024. CFlow:
Supporting Semantic Flow Analysis of Students’ Code in Programming Problems
at Scale. In Proceedings of the Eleventh ACM Conference on Learning @ Scale
(Atlanta, GA, USA) (L@S ’24). Association for Computing Machinery, New York,
NY, USA, 188-199. https://doi.org/10.1145/3657604.3662025

https://doi.org/10.1016/j.entcs.2007.01.043
https://api.semanticscholar.org/CorpusID:252991357
https://doi.org/10.1109/CCECE.2000.849582
https://doi.org/10.1109/FIE.2007.4418051
https://doi.org/10.1109/FIE.2007.4418051
https://doi.org/10.1016/j.entcs.2007.01.040
http://www.cs.joensuu.fi/~pbyckli/
https://doi.org/10.1177/1473871619878085
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.3929/ethz-a-006869932
https://doi.org/10.1145/1839594.1839610
https://doi.org/10.15388/infedu.2009.02
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.14778/3055330.3055333
https://doi.org/10.1016/j.entcs.2007.01.041
https://doi.org/10.1016/j.entcs.2007.01.041
https://doi.org/10.1145/1268784.1268858
https://doi.org/10.1145/1268784.1268858
https://doi.org/10.1145/3596673.3596972
https://doi.org/10.1145/3411764.3445265
https://doi.org/10.1145/3649217.3653532
https://doi.org/10.1145/3318464.3389767
https://doi.org/10.1016/S0360-1315(02)00076-3
https://doi.org/10.1016/S0360-1315(02)00076-3
https://doi.org/10.1109/VL/HCC51201.2021.9576431
https://doi.org/10.1109/VL/HCC51201.2021.9576431
https://doi.org/10.1016/j.compedu.2012.08.009
https://doi.org/10.1145/989863.989928
https://doi.org/10.1145/3411764.3445063
https://api.semanticscholar.org/CorpusID:202706336
https://api.semanticscholar.org/CorpusID:202706336
https://api.semanticscholar.org/CorpusID:58796028
https://api.semanticscholar.org/CorpusID:58796028
https://doi.org/10.28945/195
https://doi.org/10.1145/774833.774835
https://api.semanticscholar.org/CorpusID:14724609
https://doi.org/10.1145/3472749.3474744
https://doi.org/10.1145/3472749.3474744
https://cs.uef.fi/pub/Theses/2005_MSc_Sivula_Kimmo.pdf
https://cs.uef.fi/pub/Theses/2005_MSc_Sivula_Kimmo.pdf
https://doi.org/10.1145/2490822
https://doi.org/10.1145/2490822
https://doi.org/10.1145/1930464.1930471
https://doi.org/10.1145/3657604.3662025

	Abstract
	1 Introduction
	2 Related Work
	3 Overview of Pandas Tutor System
	4 Methods
	5 Quantitative Results
	6 Qualitative Results
	6.1 In-notebook visualizations were usable and useful
	6.2 Using visualizations to verify assumptions
	6.3 Beyond the default table output
	6.4 Managing cognitive load with interaction
	6.5 Limitations of Pandas Tutor

	7 Discussion
	7.1 Study Limitations
	7.2 Design guidelines for program visualization tools in data science
	7.3 Complementing LLM tools

	8 Conclusion
	References

