“I’m not sure, but...”: Expert Practices that Enable Effective Code
Comprehension in Data Science

Christopher Lum*
lum@ucsd.edu
University of California San Diego
La Jolla, CA, USA

Guoxuan Xu"
g7xu@ucsd.edu
University of California San Diego
La Jolla, CA, USA

Sam Lau
lau@ucsd.edu
University of California San Diego
La Jolla, CA, USA

Section 5.1 Section 5.2 Section 5.3 Section 5.4 Final understanding
Everyone faces Understanding the Building knowledge Using data table Overall accuracy in
complicated code program of the unknown outputs to help understanding of task
Novices:
e ™ e N e N e N
Surface-level Assume Becomes
observations functionality and overwhelmed Low accuracy
about code move on with large output
Difficult code ~ g ~ g ~ g ~ g
launches process
of discovery Experts: . p . p . p .
Focus on Infer functionality Visualize data
understanding and confirm with table with a plan High accuracy
data an aid ahead of time

Figure 1: Our paper finds that data science novices (top row) and experts (bottom row) demonstrate different approaches
to code comprehension when given data analysis of realistic complexity. These differences lead experts to achieve a better

understanding of code compared to novices.

Abstract

Data scientists often need to read and understand messy and undoc-
umented code that relies on large software libraries. What makes
data science experts more effective than novices at this task? To
understand expert practices, we conducted a think-aloud study
where 4 novice and 5 expert data scientists reasoned about an un-
familiar data analysis script with realistic complexity that used
the Python pandas library. Surprisingly, familiarity of the pandas
package had relatively minor importance for experts. Instead, ex-
perts consistently performed three practices that novices did not:
experts examined the data in detail rather than fixating on surface-
level code features; experts consistently verified their assumptions
about how the data was transformed; and experts navigated lengthy
program outputs in a goal-directed way. Using these findings, we
provide a practical set of guidelines for data science pedagogy and
for future tools to support data science learners.

CCS Concepts

« Human-centered computing — Empirical studies in HCL

*Christopher Lum and Guoxuan Xu contributed equally to this work as co-first authors.

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0531-1/25/02
https://doi.org/10.1145/3641554.3701933

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Keywords

data science education, code comprehension, expertise

ACM Reference Format:

Christopher Lum, Guoxuan Xu, and Sam Lau. 2025. “I'm not sure, but...”:
Expert Practices that Enable Effective Code Comprehension in Data Science.
In Proceedings of the 56th ACM Technical Symposium on Computer Science
Education V. 1 (SIGCSE TS 2025), February 26-March 1, 2025, Pittsburgh, PA,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3641554.
3701933

1 Introduction

Data scientists — people who manipulate data to gain insights from
it [12] - often engage in exploratory programming, where they
iteratively write code to try out multiple ideas [7]. For example,
people who develop machine learning models frequently experi-
ment with many variations of data manipulations, algorithms, and
model parameters. The nature of this work often results in code that
is lengthy, messy, and undocumented [28]. Consequently, profes-
sional data scientists must develop the skills to understand, debug,
and modify such code, whether written by themselves or by their
colleagues.

Because of this reality, it is important for data science novices
to develop competencies around reading and understanding code
that manipulates data tables. This need is heightened by the emer-
gence of large language models (LLMs), which, in the context of
data science programming, can often generate code that runs with-
out raising an error but is slightly incorrect and requires careful


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3641554.3701933
https://doi.org/10.1145/3641554.3701933
https://doi.org/10.1145/3641554.3701933

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

debugging [29]. Prior work on program comprehension has fo-
cused primarily on introductory computer science courses [18, 24].
In contrast to introductory computer science, introductory data
science courses often rely on large software packages to manipu-
late large datasets. For instance, the paper authors regularly teach
data science courses using the pandas Python library, which has
hundreds of methods, to analyze datasets with millions of rows.
Although this suggests that teaching novices code comprehension
in data science might be different from teaching it in computer sci-
ence, little is currently known about what we should teach novices.
This raises a critical question: What are the differences in code
comprehension strategies between expert and novice data
scientists?

To address this question, we conducted a think-aloud study with
four novice and five expert data scientists as they reasoned about an
unfamiliar data analysis in a lab setting. Surprisingly, both novices
and experts found the code highly difficult to understand at a first
glance, suggesting that familiarity with pandas might not have
played a dominant role for experts’ success. Instead, we observed
that experts regularly performed three practices that novices did
not: experts examined the data in detail rather than fixating on
surface-level code features; experts consistently verified their as-
sumptions about how the code transformed data; and experts ex-
amined lengthy program outputs in a highly goal-directed way.
These findings are summarized in Figure 1. Overall, these insights
suggest metacognitive skills that can be explicitly taught to novices
to support their progress towards expertise. This paper makes two
main contributions:

o The first empirical study, to our knowledge, that compares
expert data scientist behavior to novice data scientist behav-
ior on a realistic data science programming task.

e Pedagogical suggestions to help novices develop metacogni-
tive skills for understanding data analysis code.

2 Related Work

The work in this paper draws from and builds upon prior research
in three main areas: data science curriculum development, code
comprehension studies, and practices of professional data scientists.
The following subsections elaborate.

2.1 Data Science Curricula

Data science is a rapidly growing discipline that integrates methods
from both computer science and statistics to make decisions and pre-
dictions about the future using large datasets [9]. The demand for
individuals with data science skills has motivated many universities
around the world to design data science programs at the under-
graduate level [25]. In contrast to typical introductory computer
science (CS1) courses, which emphasize topics like data types, iter-
ation, control flow, and subprograms [5], introductory data science
courses typically emphasize using higher-level software libraries
like pandas to work with data tables, or dataframes [3, 6] and also
strike a balance between computer science and statistics [2, 8, 21].
Although there is general consensus among educators that teaching
data science is different from teaching computer science or statis-
tics alone [13], it is still a topic of active investigation to delineate
exactly what those differences are. This paper contributes to this

Christopher Lum, Guoxuan Xu, and Sam Lau

ongoing line of work by comparing the skills of novice and expert
data scientists, which can guide instructors who are teaching data
science to novices.

2.2 Novices Understanding Code

Many prior studies have investigated code comprehension for
novices in computer science education. Experts are quicker to
comprehend code due to their additional experience and prac-
tice [23, 33]. On the other hand, novice programmers tend to have a
weak understanding of code in their introductory computer science
courses [4, 22]. One way that novices can bolster their understand-
ing of these skills is through code tracing, where novices predict
the outcome of code before it is run by hand [11, 14, 15, 22]. In some
cases, novices struggle to use tracing due to misunderstandings of
the code’s applications or simply just the code itself [15]. Another
way of remedying this problem-solving issue is by having a better
metacognitive understanding of the problem-solving process to
know how to tackle problems as they arise [27]. For data science
specifically, Singh et al. [31] examined how data science students
made errors in writing their own code. However, there is generally
a lack of research on how data science students understand code
that they didn’t write themselves, which we address through the
work in this paper.

2.3 Data Science in Practice

The code that data scientists tend to write differs from that of
computer scientists. Analysis tasks often requires some form of
exploratory programming, where programmers don’t necessarily
code with an explicit goal in mind when starting [7]. To support
this style of programming, computational notebooks like Jupyter
enable users to selectively execute code snippets rather than the
entire program [19]. However, the nature of exploratory program-
ming can also result in messy, undocumented notebooks [28]. For
example, since code snippets in notebooks can be run out-of-order,
it is not uncommon for notebooks to contain code that was written
to test an idea, then left unused in the final analysis [16]. Thus, data
scientists who want to build upon work found online or through
colleagues must be able to read and understand messy code found in
computational notebooks. This study provides insight into this pro-
cess by comparing experts and novices as they understand realistic
data analyses.

3 Methods

To understand differences between data science novices and experts,
we conducted an in-lab, think-aloud user study.

Participants. We recruited novice data scientists by posting
email advertisements for undergraduate students in introductory-
level data science courses at a large research-focused university in
North America. We filtered for students that had taken at least one
year of programming experience and had taken at least one course
that used the pandas library. We recruited expert data scientists
through personal outreach to advanced undergraduate students
and graduate students in our department. In total, we recruited 4
novice and 5 expert data scientists. Participants received a $20 gift
card for participating in the study. Participant demographics are
presented in Table 1.



“I’m not sure, but...”: Expert Practices that Enable Effective Code Comprehension in Data Science

PID AgeRange Position

Py. Exp. (Yr) Pandas Exp. (Yr)

N1 18-21 Undergraduate 1 1
N2  18-21 Undergraduate 2 1
N3  18-21 Undergraduate 1 1
N4  18-21 Undergraduate 3 1
E1  22-25 Consultant 5+ 4
E2 22-25 Ph.D 3 3
E3 26-29 Ph.D 5 5
E4  18-21 Undergraduate 5+ 3
E5  18-21 Undergraduate 3 2

Table 1: Participant demographics. PID = Participant ID; Py.
Exp. (Yr) = Years of experience programming in Python; Pan-
das Exp. (Yr) = Years of experience programming with pandas.

Protocol. Each participant completed a 50-minute Zoom user
study with three phases: Training, Task, and Interview. In the Train-
ing phase (5 minutes), participants opened a Jupyter notebook with
a data cleaning script using the Python pandas package, and the
experimenter provided context, goals, and time limits. During the
Task phase (30 minutes), participants completed three tasks, each
requiring them to read, interpret, and describe code snippets. They
could search online, write additional code, and modify the original
code, with an unmodified copy available if needed. They had 10
minutes per task and moved to the next if time ran out. After each
task, participants rated their confidence and the task difficulty. In
the Interview phase (15 minutes), participants reflected on their ap-
proach and challenges. Their survey responses, screens, and audio
were recorded for analysis.

Tasks. One of the paper authors used their experience in oceanog-
raphy to create a Jupyter notebook using a real-life dataset from
NOAA that recorded ocean current data on a single day in May 2024
[1]. The code that participants were asked to understand was split
into tasks which contained between 15-40 lines of pandas code.
Each task conducted a common data processing step for this domain
- 1) discovering missing values, 2) imputing missing values, and 3)
evaluating the effect of imputation. Each code snippet contained
multiple pandas function calls for manipulating dataframes. Since
the code was adapted from a previous analysis of the data, the code
used pandas functions ranging in complexity so that both experts
and novices would encounter familiar and unfamiliar functions.
The notebook did not contain documentation, but we included a
link to the dataset website and used descriptive variable names,
which is similar to data science code found in previous work [28].
The complete task code is available on GitHub!.

4 Quantitative Results

4.1 Assessed Understanding

To measure participant code comprehension, we (the paper au-
thors) created a rubric to score responses from 1 to 5, where 1
indicates a lack of understanding of the program and its goals, and
5 indicates a complete understanding of both. To construct this
rubric, we listened to participant responses and scored them as if

Ihttps://github.com/dstl-lab/Code- Comprehension-User-Study

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

Expert Novice

Accuracy
(=T ]

Confidence
(=N SISV S e R

Perceived
difficulty
(=T % B P S W= |

Overall Task 1 Task 2 Task 3

Figure 2: Experts were more accurate, more confident, and
found the code easier to understand compared to novices on
our code comprehension tasks. Error bars are 95% confidence
intervals.

we were grading responses to an exam question. We then asked
two independent evaluators to score each participant response us-
ing our rubric. After the initial round of scoring, the evaluators
discussed responses where their scores differed until they reached
an agreement for all participants.

As a whole, experts performed better than novices in under-
standing the operations and motivations of the code. The experts
had a mean score of 3.00 (¢ = 1.13) and the novices had a mean
score of 1.75 (o = 0.75). This difference was found to be statistically
significant with a t-test (£(25) = 3.28, p < 0.005).

4.2 Self-Reported Understanding

Immediately following each task, the participants were asked to
respond to a survey asking about their confidence and perceived
difficulty of the task on a scale from 1 to 7 with 1 as the least
confident/difficult and 7 being the most. Compared to novices,
experts were more confident and found the tasks less difficult.
Across all tasks, experts rated their confidence as 4.93 on aver-
age (o = 1.44), and the novices rated their confidence as 3.42 on
average (o = 1.16), which was statistically significant using a t-test
(t(25) = 2.96, p < 0.005).

As for difficulty, the experts reported a mean of 3.73 (o = 1.16)
for difficulty and novices reported a mean of 5.00 (o = 0.95). This
difference was found to be statistically significant by using a t-test
(t(25) = —3.04,p < 0.005). Figure 2 illustrates the difference in
scored accuracy, confidence, and perceived difficulty split across
each of the three tasks and overall.


https://github.com/dstl-lab/Code-Comprehension-User-Study

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

Christopher Lum, Guoxuan Xu, and Sam Lau

Theme Description

Representative Quotes

Participants

Code was challenging
for all participants
(Section 5.1)

Both experts and novices found
pandas code difficult to
understand.

Novice: “There’s a lot of random functions I
don’t think I've learned yet.” (N3)
Expert: “It can get very challenging to keep

N1, N2, N3, E1, E5

track of all the different moving parts.” (E5)

Experts examine the
data rather than
surface-level code
features (Section 5.2)

Experts begin by examining the
data and its schema in detail, while
novices tend to use surface
features of the code without
looking at the data.

Novices guess; experts
guess-and-check
(Section 5.3)

Experts consistently check their
assumptions about what the code
is doing, while novices do not.

Novice: “Since the variable is named
unmelting, are we melting the ships?” (N2)
Expert: “I can open up [raw data] files here?
Okay. Alright” (E3)

Novice: “I'm assuming [the variable]
unmelted would be the same as melted” (N1)
Expert: “Even though I think I understand

N1,N2,N4,E1,E3,E4

N1-4,E1-5

that, I was trying to make that everything’s
right here” (E3)

Experts Approach Experts hunt for their expected
Large Program Outputs outcomes in program outputs,
With a Goal in Mind while novices become

(Section 5.4) overwhelmed by the amount of

information presented on-screen

Novice: “oh wow, that’s a lot of data” (N4)
Expert: “I'm looking for a word ‘“TIME’ [in
the dataframe].” (E2)

N1, N3, N4, E1, E5

Table 2: Summary of quantitative results, organized by themes

5 Qualitative Results

To derive themes from the interviews, the paper authors met regu-
larly to watch participant videos and discuss notes together. Through-
out this process, we iteratively came up with a set of themes using an
inductive approach [10]. An overview of these themes is provided
in Table 2, with detailed descriptions presented in the following
subsections.

5.1 Code was challenging for all participants

One characteristic of expertise is the ability to rapidly access past
knowledge without conscious effort [30]. In the context of data
science programming, this suggests that experts should be able to
quickly recognize and accurately use pandas functions to under-
stand what code is doing. Surprisingly, both novices and experts
considered the code to be highly unfamiliar and difficult to under-
stand. They pointed out that the code contained many function
calls that they either hadn’t seen before or weren’t familiar with.
Novices stated that "there’s a lot of random functions I don’t think
I've learned yet" (N3) and "I wasn’t really familiar with melt and
rename and transform" (N1). Experts also found the code chal-
lenging with many unfamiliar functions: "I found it more difficult
because I think, well, I didn’t know what melt did" (E5). Even ex-
perts who recognized a function didn’t necessarily know how to
translate it into usable knowledge: "T know what pd.melt does, but
I can’t really simulate what it does in my head" (E1).

Even familiar function calls were difficult for both experts and
novices to reason about. For example, novices stated that "even
this is simple code, it’s different [from what I learned in class], so I
don’t think it’s what I was thinking" (N2). Even experts found that

long sequences of familiar functions were difficult to reason about:
"When you have multiple [groupby function calls], and especially
with the pivot tables too, it can get very challenging to keep track
of all the different moving parts" (E5).

This set of findings suggest that data science code is tricky be-
cause even one function call can completely restructure a dataframe
(e.g. pivoting a table). Data cleaning scripts often have many func-
tion calls in sequence, making the code even more difficult to reason
about. In addition, it’s not uncommon for datasets to contain thou-
sands of rows or more, making it very difficult to simulate or even
keep track of how the code is transforming every single value. Al-
though our experts were able to recognize and trace more function
calls than novices, experts still found it initially challenging to
reason about multiple function calls in sequence.

5.2 Experts examine the data rather than
surface-level code features

All participants attempted to read the code line-by-line and men-
tally simulate what the code is doing. As mentioned earlier, this was
challenging for both experts and novices. When novices couldn’t
mentally simulate the code, they used surface-level features like
method and variable names to try to infer what the code was doing
(N1, N2, N4). For example, one novice stated, “Since the variable
is named unmelting, are we melting the ships now or was there a
melting task that I missed?” (N2). Novices also relied on the column
names of the dataframes that were displayed in the notebook (N2-
N4). However, this strategy wasn’t always successful, since variable
names and column names themselves could be difficult to under-
stand, as one novice noted, “Maybe the variable name unmelted



“I’m not sure, but...”: Expert Practices that Enable Effective Code Comprehension in Data Science

makes sense to someone who knows what melting is, but I don’t
know what melting is” (N1). Another novice pointed out that to
improve their understanding of the program, “it would really, really
help if they have good coding discipline, which is good variable
naming” (N4), in spite of the fact that the code was originally writ-
ten with descriptive variable and function names. In some cases,
novices appeared to give up on understanding the code line-by-line
and instead tried to used the visualizations generated by the code
to guess what the code was doing (N2).

In contrast, experts focused on understanding the data itself
rather than the surface-level features of the code and dataframes
(E1-E5). In fact, some experts started their process by opening the
raw data file as plain text and reading through some of the data
values (E3, E4). One justified this by saying, “If I know what the
data is, then I have a better sense on how to work with it or how to
navigate interpreting it” (E4). Some experts even wanted to open the
data file using another program like Excel, mentioning drawbacks
of their notebook programming environment:

“The default Jupyter Notebook output is not that good
for looking at the entire data set and just getting an
idea of what the columns are, what the types are,
whether there’s missingness or different types of null
values. So just kind of manually inspecting it at first
is just a good way to figure out, just get the lay of the
land for a dataset you’ve never seen before” (E1)

Experts would return to the data repeatedly as they traced the
code in order to understand how code transformed the dataframes.
This behavior stood in stark contrast to novices, none of whom
examined the original dataset and instead attempted to draw con-
clusions about the code immediately.

5.3 Novices guess; experts guess-and-check

Because the think-aloud study asked participants to vocalize their
thinking process, we observed that both novices and experts con-
sistently made guesses about the functionality of the code (N1-N4,
E1-E5). However, all of our novice participants made guesses with-
out verifying their accuracy. Our tasks were between 10-40 lines of
code. One common observation is that novices viewed the code, ran
the code to obtain the final output, made a guess about each line
of code, and then formed an overall description about the code’s
purpose without checking whether their guesses about the code
were correct. When asked about how they knew what the code was
doing, one novice stated, “I read each line, and this is what the code
looks like it’s doing, so I'm going to go with that” (N3).

In contrast, all of our experts would constantly check their
guesses by using print statements to view intermediate variables
created in the code snippets. The most common strategy was to
print the dataframe before and after a line of code:

“I can take a snapshot of what the data looks like be-
fore an operation and then I could take a look at what
it’s like after an operation and that was able to con-
firm my beliefs about what is actually happening to
the data. [...] It helps elucidate what’s happening pro-
grammatically by just being able to go in and double
check, ‘are all the numbers doing what I want?” or ‘is
there anything that’s off?”” (E5)

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

Most of the other expert participants echoed this sentiment (E1-
E3). Notably, this process was perceived as “very tedious” (E1) and
made their notebooks “a mess” (E3), because participants needed
to insert new print statements, copy-paste variable names or entire
code expressions, and comment out code in order to see the inter-
mediate results of the code. Despite this extra effort, experts felt
that this process was necessary to check their assumptions about
the code.

5.4 Experts approach large program outputs
with a goal in mind

Both novices and experts printed out dataframes to understand
how the code worked, using a combination of the default notebook
output, the built-in print () function in Python, and examining the
entire dataset. Because the input data contained many rows, how-
ever, novices would often get overwhelmed by the sheer amount
of data displayed when printing the dataframe and made many
statements like “I'm not sure where to even start” (N1). To deal
with this, novices tended to focus on the column names and the first
few rows of the data to avoid reading through the entire dataframe
(N1, N3, N4).

In contrast, experts had a specific goal in mind when they printed
out dataframes. For example, one line of code cleaned out rows that
contained the value ’TIME’, since this value denoted header data
rather than actual data values. When experts wanted to see how
this code worked, they printed out the entire original dataframe
and then scrolled through the dataframe to specifically look for
rows with the *TIME’ value (E1, E5) because these values were
nestled in the middle of the dataframe between actual data values.
This process generated insight about the data:

I'm looking for a word ' TIME’ here, and it seems like,
whoa, it seems like what this text file is all about is
they’ve stitched multiple tables together vertically.
(E5)

This goal-directed behavior seemed to help experts navigate
through larger table outputs to confirm or reject their guesses
about code, rather than fixating on the surface-level details of every
single data point.

6 Discussion

This section describes the limitations of our study, reflects on the
differences between CS1 and introductory data science, and pro-
vides recommendations for instructors who teach introductory data
science.

6.1 Study limitations

Our study findings are limited in the following ways. Our sample
was limited to a small segment of the broader data science novice
and expert population. The novice participants were undergraduate
students, but there are many other groups of novice data science
learners, such as professional software engineers who want to
pivot to machine learning. In addition, the expert participants were
advanced undergraduates, graduate students, or individuals who
recently earned a graduate degree. It’s possible that data scientists
with more years of experience would have greater knowledge of



SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

pandas and thus use different strategies to understand code. Be-
cause of these limitations, we use our study observations to make
recommendations for what instructors can do to support novices,
rather than what instructors should do.

6.2 Expert metacognitive skills in data science

Before we began this study, we expected that the differences be-
tween expert and novice data scientists would be dominated by
procedural knowledge. Since experts have had more experience
programming and working with pandas, we thought that experts
would be able to trace code using their knowledge of familiar func-
tion calls. Instead, we found that experts were initially just as con-
fused as novices.

Our study revealed that the key advantage experts had over
novices was their highly developed metacognitive skills. These
skills enabled experts to probe code outputs and maintain a sense
of skepticism about the data. However, there is currently a lack
of knowledge about what these metacognitive skills entail in the
context of data science. Identifying desired metacognitive skills,
and explicitly teaching them is an important part of pedagogy
and can particularly benefit students from underrepresented back-
grounds [17, 32]. As such, we make the following pedagogical rec-
ommendations for instructors teaching data science novices:

(1) Embrace feeling uncertain about code. In our study, even ex-
perts couldn’t remember what pandas methods did and felt
confused when multiple pandas methods were called in se-
quence. Instructors can help novices understand that this
feeling is to be expected when working with complicated
data science code and is not necessarily an indication that
they lack sufficient knowledge about data science to proceed.

(2) Go back to the data. Experts in our study wanted to examine
the original data in detail and develop as much contextual
information as possible before starting to understand the
code. Instructors can encourage novices to open the dataset
and understand it as deeply as possible, which can help
novices make sense of code.

(3) Externalize questions about the data. Novices frequently lost
track of their assumptions because they became overwhelmed
by large dataframe displays. To help address this, instructors
can teach novices to explicitly externalize their guesses (e.g.
by writing them down) before verifying them in the data.

To our knowledge, this study is the first to provide empirical ev-

idence for metacognitive skills that data science instructors should
teach their students. Future studies should seek to discover a more
comprehensive set of metacognitive skills and design pedagogical
techniques to help students develop metacognitive skills in data
science.

6.3 Beyond code comprehension in
introductory data science

With the emergence of LLM tools that can quickly generate code,
code comprehension has become an important competency in addi-
tion to writing code from scratch [20, 26]. In CS1, there is a relatively
limited subset of primitive language features that students need
to learn, and most operations transform single data values. Thus,
students who have achieved mastery in CS1 can be expected to

Christopher Lum, Guoxuan Xu, and Sam Lau

precisely trace a program’s execution. However, in data science this
is less feasible — even a single pandas function can have over ten op-
tional arguments that change the function’s behavior in subtle but
important ways. Additionally, it is very difficult to create a precise
mental simulation for code that repeatedly transforms thousands
of rows of data. In this light, what do code comprehension skills in
data science look like? We make initial suggestions based on our
comparisons of novices and experts in this study.

First, code and data comprehension in data science appear to
be inextricably linked. Experts were able to understand the code
with greater accuracy in part because they carefully examined
the raw data and its schema. Since many attributes of the dataset
appear in the code (e.g. hard-coding column names in function
arguments), assessing code comprehension in data science might
begin by assessing how well learners understand the characteristics
of their data.

Second, code comprehension in data science seems to involve
developing an understanding of why a transformation was done in
addition to what was done. Code that runs without raising a Python
error can still be erroneous for data analysis - for example, pandas
will not raise an error if you group a dataframe using a column
of continuous data like temperature, even though this operation
would seldom have semantic meaning. A row in a dataframe is a
representation of a real-life measurement, and experts in our study
sought to understand how dataframe transformations would gener-
ate conclusions about the data in context. In summary, perhaps the
term code comprehension is too narrow for data science, since code
in data science is almost always interpreted in context.

7 Conclusion

In this paper, we examine differences between novice and expert
data scientists in a realistic data analysis scenario. A think-aloud
study with 4 novice and 5 expert data scientists found that pro-
cedural knowledge about pandas function calls seemed to play a
relatively minor role for experts, who also found the data analysis
code initially overwhelming. Instead, our study revealed metacogni-
tive practices that experts consistently performed more often than
novices to develop more accurate understanding of data analysis
code. Altogether, this work provides evidence that code comprehen-
sion skills in data science differ from those in computer science, and
provides pedagogical recommendations for data science instruc-
tors who seek to teach both procedural and metacognitive skills to
learners.

References

[1] [n.d.]. NDBC - Observations - Radial Search — ndbc.noaa.gov. https://www.ndbc.
noaa.gov/radial_search.php?lat1=32.868N&lon1=117.267W &uom=E&dist=250.
[Accessed 20-05-2024].

[2] Joel C. Adams. 2020. Creating a Balanced Data Science Program. In Proceedings

of the 51st ACM Technical Symposium on Computer Science Education (SIGCSE

’20). ACM. https://doi.org/10.1145/3328778.3366800

Ani Adhikari, John DeNero, and Michael I Jordan. 2021. Interleaving computa-

tional and inferential thinking: Data science for undergraduates at. Harvard Data

Science Review 3, 2 (2021).

Ella Albrecht and Jens Grabowski. 2020. Sometimes It’s Just Sloppiness - Studying

Students’ Programming Errors and Misconceptions. In Proceedings of the 51st

ACM Technical Symposium on Computer Science Education (SIGCSE "20). ACM.

https://doi.org/10.1145/3328778.3366862

Richard H Austing, Bruce H Barnes, Della T Bonnette, Gerald L Engel, and Gordon

Stokes. 1979. Curriculum’78: recommendations for the undergraduate program

[3

[4

[5


https://www.ndbc.noaa.gov/radial_search.php?lat1=32.868N&lon1=117.267W&uom=E&dist=250
https://www.ndbc.noaa.gov/radial_search.php?lat1=32.868N&lon1=117.267W&uom=E&dist=250
https://doi.org/10.1145/3328778.3366800
https://doi.org/10.1145/3328778.3366862

“I’m not sure, but...”: Expert Practices that Enable Effective Code Comprehension in Data Science

[9

=

[10]

(1]

[12]

[13

[14]

[15]

[16]

=
=

(18]

[19]

[20]

in computer science—a report of the ACM curriculum committee on computer
science. Commun. ACM 22, 3 (1979), 147-166.

Ben Baumer. 2015. A data science course for undergraduates: Thinking with data.
The American Statistician 69, 4 (2015), 334-342.

Mary Beth Kery and Brad A. Myers. 2017. Exploring exploratory programming.
In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE. https://doi.org/10.1109/vlhcc.2017.8103446

Joshua Burridge and Alan Fekete. 2022. Teaching Programming for First-Year
Data Science. In Proceedings of the 27th ACM Conference on on Innovation and
Technology in Computer Science Education Vol. 1 (ITiCSE 2022). ACM. https:
//doi.org/10.1145/3502718.3524740

Longbing Cao. 2017. Data science: a comprehensive overview. ACM Computing
Surveys (CSUR) 50, 3 (2017), 1-42.

Juliet Corbin and Anselm Strauss. 2015. Basics of qualitative research. Vol. 14.
sage.

Kathryn Cunningham, Sarah Blanchard, Barbara Ericson, and Mark Guzdial.
2017. Using Tracing and Sketching to Solve Programming Problems: Replicating
and Extending an Analysis of What Students Draw. In Proceedings of the 2017
ACM Conference on International Computing Education Research (ICER ’17). ACM.
https://doi.org/10.1145/3105726.3106190

Thomas H Davenport and DJ Patil. 2012. Data scientist. Harvard business review
90, 5 (2012), 70-76.

Richard D De Veaux, Mahesh Agarwal, Maia Averett, Benjamin S Baumer, Andrew
Bray, Thomas C Bressoud, Lance Bryant, Lei Z Cheng, Amanda Francis, Robert
Gould, et al. 2017. Curriculum guidelines for undergraduate programs in data
science. Annual Review of Statistics and Its Application 4, 1 (2017), 15-30.
Ankur Gupta and Ryan Rybarczyk. 2023. Improving Long Term Performance
Using Visualized Scope Tracing: A 10-Year Study. In Proceedings of the 54th ACM
Technical Symposium on Computer Science Education V. 1 (SIGCSE 2023). ACM.
https://doi.org/10.1145/3545945.3569748

Mohammed Hassan and Craig Zilles. 2023. On Students’ Usage of Tracing for
Understanding Code. In Proceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1 (SIGCSE 2023). ACM. https://doi.org/10.1145/
3545945.3569741

Andrew Head, Fred Hohman, Titus Barik, Steven M. Drucker, and Robert DeLine.
2019. Managing Messes in Computational Notebooks. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems (CHI ’19). ACM.
https://doi.org/10.1145/3290605.3300500

Scott Horrell, Jana Marcette, and Sudarsan Kant. 2019. Metacognition: A Tool for
Overcoming Discrimination. Peer Review 21 (2019).

Cruz Izu, Carsten Schulte, Ashish Aggarwal, Quintin Cutts, Rodrigo Duran,
Mirela Gutica, Birte Heinemann, Eileen Kraemer, Violetta Lonati, Claudio Mirolo,
et al. 2019. Fostering program comprehension in novice programmers-learning
activities and learning trajectories. In Proceedings of the Working Group Reports
on Innovation and Technology in Computer Science Education. 27-52.

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason
Grout, Sylvain Corlay, et al. 2016. Jupyter Notebooks—a publishing format for
reproducible computational workflows. In Positioning and power in academic
publishing: Players, agents and agendas. IOS press, 87-90.

Sam Lau and Philip Guo. 2023. From "Ban it till we understand it" to" Resistance is
futile": How university programming instructors plan to adapt as more students
use Al code generation and explanation tools such as ChatGPT and GitHub
Copilot. In Proceedings of the 2023 ACM Conference on International Computing
Education Research-Volume 1. 106-121.

SIGCSE TS 2025, February 26-March 1, 2025, Pittsburgh, PA, USA

[21] Sam Lau, Deborah Nolan, Joseph Gonzalez, and Philip J Guo. 2022. How Computer

Science and Statistics Instructors Approach Data Science Pedagogy Differently:
Three Case Studies. In Proceedings of the 53rd ACM Technical Symposium on
Computer Science Education-Volume 1. 29-35.

Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Mostrém, Kate Sanders, Otto
Seppild, Beth Simon, and Lynda Thomas. 2004. A multi-national study of reading
and tracing skills in novice programmers. ACM SIGCSE Bulletin 36, 4 (June 2004),
119-150. https://doi.org/10.1145/1041624.1041673

Tony Lowe. 2019. Explaining Novice Programmer’s Struggles, in Two Parts:
Revisiting the ITiCSE 2004 working group’s study using dual process theory. In
Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE °19). ACM. https://doi.org/10.1145/3304221.3319775
Greg L Nelson, Benjamin Xie, and Amy J Ko. 2017. Comprehension first: eval-
uating a novel pedagogy and tutoring system for program tracing in CS1. In
Proceedings of the 2017 ACM conference on international computing education
research. 2-11.

National Academies of Sciences, Division of Behavioral, Social Sciences, Board
on Science Education, Division on Engineering, Physical Sciences, Committee
on Applied, Theoretical Statistics, Board on Mathematical Sciences, Analytics,
et al. 2018. Data science for undergraduates: Opportunities and options. National
Academies Press.

[26] James Prather, Juho Leinonen, Natalie Kiesler, Jamie Gorson Benario, Sam Lau,

Stephen MacNeil, Narges Norouzi, Simone Opel, Virginia Pettit, Leo Porter, et al.
2024. How Instructors Incorporate Generative Al into Teaching Computing.
In Proceedings of the 2024 on Innovation and Technology in Computer Science
Education V. 2. 771-772.

James Prather, Raymond Pettit, Brett A. Becker, Paul Denny, Dastyni Loksa, Alani
Peters, Zachary Albrecht, and Krista Masci. 2019. First Things First: Providing
Metacognitive Scaffolding for Interpreting Problem Prompts. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (SIGCSE ’19).
ACM. https://doi.org/10.1145/3287324.3287374

Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration and Ex-
planation in Computational Notebooks. In Proceedings of the 2018 CHI Con-
ference on Human Factors in Computing Systems (CHI ’18). ACM.  https:
//doi.org/10.1145/3173574.3173606

Jaromir Savelka, Arav Agarwal, Marshall An, Chris Bogart, and Majd Sakr. 2023.
Thrilled by your progress! large language models (gpt-4) no longer struggle to
pass assessments in higher education programming courses. In Proceedings of
the 2023 ACM Conference on International Computing Education Research-Volume
1.78-92.

Herbert Simon and William Chase. 1988. Skill in Chess. Springer New York,
175-188. https://doi.org/10.1007/978-1-4757-1968-0_18

Anjali Singh, Anna Fariha, Christopher Brooks, Gustavo Soares, Austin Z. Henley,
Ashish Tiwari, Chethan M, Heeryung Choi, and Sumit Gulwani. 2024. Investigat-
ing Student Mistakes in Introductory Data Science Programming. In Proceedings
of the 55th ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE
2024). ACM. https://doi.org/10.1145/3626252.3630884

Khanh Lam LH Tao. 2021. Metacognition and First-Year College Success: Under-
standing the Experiences of the Underrepresented in STEM. Ph.D. Dissertation.
Northeastern University.

Susan Wiedenbeck. 1985. Novice/expert differences in programming skills. In-
ternational Journal of Man-Machine Studies 23, 4 (Oct. 1985), 383-390. https:
//doi.org/10.1016/s0020-7373(85)80041-9


https://doi.org/10.1109/vlhcc.2017.8103446
https://doi.org/10.1145/3502718.3524740
https://doi.org/10.1145/3502718.3524740
https://doi.org/10.1145/3105726.3106190
https://doi.org/10.1145/3545945.3569748
https://doi.org/10.1145/3545945.3569741
https://doi.org/10.1145/3545945.3569741
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1145/1041624.1041673
https://doi.org/10.1145/3304221.3319775
https://doi.org/10.1145/3287324.3287374
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1007/978-1-4757-1968-0_18
https://doi.org/10.1145/3626252.3630884
https://doi.org/10.1016/s0020-7373(85)80041-9
https://doi.org/10.1016/s0020-7373(85)80041-9

	Abstract
	1 Introduction
	2 Related Work
	2.1 Data Science Curricula
	2.2 Novices Understanding Code
	2.3 Data Science in Practice

	3 Methods
	4 Quantitative Results
	4.1 Assessed Understanding
	4.2 Self-Reported Understanding

	5 Qualitative Results
	5.1 Code was challenging for all participants
	5.2 Experts examine the data rather than surface-level code features
	5.3 Novices guess; experts guess-and-check
	5.4 Experts approach large program outputs with a goal in mind

	6 Discussion
	6.1 Study limitations
	6.2 Expert metacognitive skills in data science
	6.3 Beyond code comprehension in introductory data science

	7 Conclusion
	References

