The Design Space of LLM-Based
Al Coding Assistants: An Analysis of 90 Systems
in Academia and Industry

Sam Lau and Philip J. Guo
UC San Diego
La Jolla, CA, USA

Abstract—Over the past few years, millions of people have been
using LLM-based Al tools to aid in programming, data analysis,
and software engineering tasks. These Al coding assistants range
from specialized tools like GitHub Copilot to general-purpose
chatbots like Claude. In parallel, academics have published
dozens of papers on forward-looking prototypes to expand our
collective thinking beyond present-day industry trends. However,
despite rapid advances in both sectors in recent years, we still
lack an understanding of how their designs relate to one another
and what tradeoffs are commonly made. At this key moment in
2025 when design patterns are starting to emerge, it is important
to zoom out to see the forest instead of the trees. To do so,
we performed the first comprehensive design analysis of 90
LLM-based Al coding assistants. We categorized the feature
sets of 58 industry products and 32 academic projects, then
formulated a design space that captures key variations in their
user experiences. Our design space covers 10 dimensions related
to UI modalities, system inputs, capabilities, and outputs. We use
this design space to reveal trends in both industry and academic
projects across three eras ranging from autocomplete to chat to
agent-based interfaces. Lastly, to address the question of who
the target users of these tools are, we present six user personas
whose preferences lie in different regions of our design space:
professional software engineers, HCI researchers and hobbyist
programmers, UX designers, conversational programmers (e.g.,
product managers and marketers), data scientists, and students.

Index Terms—AI coding assistant, LLM, design space

I. INTRODUCTION

Researchers in programming languages, software engineer-
ing, and Al have been working for decades on techniques
like programming-by-demonstration, program synthesis, and
semantic code search, with the ultimate goal of having the
computer write more code for humans [1]-[3]. These tech-
nologies started to get widespread adoption in 2021 with the
launch of GitHub Copilot [4] and, soon afterward, ChatGPT
along with dozens of Al coding assistants based on LLMs
(Large Language Models). In the ensuing four years, there
has been a frenzy of activity at large companies, startups, and
academic research labs on using LLMs for programming.

However, as both researchers and practitioners in this field,
we noticed a gap in how people have been discussing Al
coding assistants so far: On one hand, we see many teams
across industry and academia creating new systems and writing
about their low-level technical details in isolation. On the

other, we see ‘thought leaders’ and journalists making high-
level proclamations like how Al means “The End of Program-
ming” [5] or maybe “The End of Programming as We Know
It” [6]. There are also many articles on job displacement and
economic implications, with titles like “Are Coders’ Jobs At
Risk? AI’s Impact On The Future Of Programming” [7].

But despite all this chatter in recent years, our field still
lacks a comprehensive analysis of Al coding assistants that
is both technical and broad. We feel the timing is now right
for such an analysis since these tools have started to converge
in form after the first four years of divergent experimentation
(2021-2025). Thus, in mid-2025 we conducted the first design
survey of Al coding assistants by categorizing the features of
90 systems: 58 industry products and 32 academic prototypes.
We aim to provide an archival snapshot of this critical moment
in time for future researchers and practitioners to refer to as
these tools continue evolving in the coming years.

The main contribution of this paper is a design space
that captures the most significant dimensions of variation in
system features among Al coding assistants in mid-2025. Our
approach follows the long-standing HCI tradition of formulat-
ing design spaces for technical systems in domains including
end-user programming [8], [9], information visualization [10],
[11], tangible user interfaces [12], livestreaming tools [13], and
computational notebook technologies [14], [15].

Figure 1 shows the ten dimensions of our design space,
grouped into four themes: user interface (development environ-
ment, user actions, initiative), system inputs (input format, se-
mantic context, personalization), capabilities (autonomy, sys-
tem actions), and outputs (output format, explainability). This
design space lets tool builders see the range of possibilities and
weigh trade-offs; and it enables researchers to have a shared
vocabulary with which to discuss design variations.

Using this design space as a framework, we discovered
overarching trends in both industry and academic systems
in this space. For instance, both have progressed through
three UI eras so far: 1) tab autocomplete interfaces in 2021-
2022, 2) chat-based interactions in 2023-2024, 3) toward
autonomous Al agents in 2024-2025. We noticed that industry
products often prioritize raw speed (with slogans like “Code
at the speed of thought”) [16] while academic projects more
deeply explored other design dimensions such as scaffolding
to help metacognition and self-reflection. We also saw indus-

Development Browser-based Command-Line Tool IDE Extension Standalone IDE
: accessed viaa URL accessed via terminal integrated into existing IDE custom code editor
Environment (e.g. ChatGPT) (e.g. OpenAl Codex CLI) (e.g. GitHub Copilot) (e.g. Zed)

(O]

Q
% User Actions Tab Autocomplete Single-Turn Prompt Multi-Turn Prompt
'E inline code completions one prompt without follow-ups one prompt with multiple
e (e.g. Amazon CodeWhisperer) (e.g. ChatScratch) follow-up approvals
$ (e.g. Cursor)

>
Initiative User-Initiated Proactive Suggestions Mixed-Initiative
user sends initial request system acts without prompting both user and system initiate actions
(e.g. Aider) (e.g. Codellaborator) (e.g. WaitGPT)
Input Format ~ Freeform Text - Ul Screenshots / Videos Ul Design Files Freehand Sketches Interactive Ul
natural language screen captures mockup from design software drawings of desired output structured input via custom Ul
.fB (e.g. Lovable) (e.g. Code Shaping) (e.g. ColLadder)

=

g
= | Semantic Local Line Context Active Files Code Analysis User Activity Web Search
g Context current line only files currently open in editor static or dynamic analysis previous user actions retrieves information from the web
3 (e.g. Sourcegraph Cody) (e.9. Windsurf) (e.g. Continue.dev)
Personalization Model Customization Project Rules Persistent Memory
choose or fine-tune foundation model specific guidelines for project stores long-term information about user
(e.g. Tabnine) (e.g. Claude Code) (e.g. ChatGPT)
% Autonomy None Self-Correction Autonomous Agent
£ s responds without self- system double-checks generated output iteratively takes actions
Q= correction or actions (e.g. ROCODE) (e.g. Devin)

B g

&g
O | System Actions Traversing Codebase - Creating and Editing Files Running and Testing Code Calling External Tools
indexes local files can manipulate multiple files at once can execute and reason about output of code can use outside tools
Output Format Inline Code Code Blocks Natural Language Interactive Outputs Server Deployment
Suggestions produces multiple lines explanation of code features interface for user to manipulate live frontend and back-
= % completes line of code of code at once (e.g. Claude Artifacts) end for applicgtion
[0) a at user’s cursor (e.g. Replit Al)

&3
Explainability Code Explanations Runtime Values Reasoning Trace References Diff Previews
provides rationale displays execution traces shows internal reasoning cites code or documentation shows code before and
(e.g. Ivie) (e.g. LEAP) (e.g. Interactive Task Decomposition) (e.g. Gemini Code Assist) after proposed edits

Fig. 1. The design space of LLM-based Al coding assistants, which we formulated by analyzing the features of 90 projects across academia and industry.

try products converging toward a common feature set while
academic projects diverged more in form.

Lastly, we use our design space to illustrate diverse use
cases for Al coding assistants (Figure 2). We identified six
user personas whose needs occupy different segments of the
design space: 1) professional software engineers need power
tools that can work within large existing codebases. 2) HCI
researchers and hobbyist programmers prefer a combination
of AI assistance and hand-coding to create prototypes from
scratch in order to validate new ideas. 3) UX designers can
use Al to turn mockups from Figma and other design tools
into working interactive code prototypes. 4) People such as
product managers, sales, marketing, and executives (called
‘conversational programmers’ [17]) can use Al in a ‘vibe
coding’ [18] way to make simple demos without looking at the
underlying code. 5) Data scientists may value explainability

from Al tools to better validate outputs. 6) Students learning

to code are best served by Al tools that make them reflect on

their code and provide pedagogically-appropriate explanations.
Like prior design space analyses, our dimensions and per-

sonas come from our own interpretations of the data, and we

want to encourage broader community-wide validation efforts.
In sum, this paper’s contributions are:

e A design analysis of 90 LLM-based Al coding assistants
in academia and industry up to mid-2025.

« A ten-dimensional design space that covers variations in
user-facing features across all of these systems.

e A comparative analysis of industry products and aca-
demic prototypes to reveal emerging trends across both.

e Six personas representing typical types of users of Al
coding assistants, and how their preferences for tool
features differ along our design space dimensions.

II. RELATED WORK

There have been many papers published recently on specific
LLM technologies applied to programming which we cite
throughout this paper. However, to our knowledge, there has
not yet been a survey paper that comprehensively reviews the
literature in this field. Our work is novel since it contributes a
survey of both the academic literature and industry products.

A nearby cluster of related work is empirical studies of
the user experience of specific Al coding assistants, done via
controlled lab studies, user interviews, chat log analysis, or
online surveys [19]-[24]. These projects focus on testing a
single tool (mostly GitHub Copilot for earlier work, followed
by ChatGPT) or a small group of tools. The goal of these
studies is to characterize usability rather than system features.

Methodologically, the closest related work are HCI survey
papers that formulate design spaces in other domains such as
end-user programming [8], [9], information visualization [10],
[11], tangible user interfaces [12], livestreaming tools [13], and
computational notebook technologies [14], [15]. Most recently,
Morris et al. described a design space of general-purpose
GenAl interactions (not specific to coding) in a 2023 arXiv
report [25]; and Wang et al. surveyed the space of human-
Al interactions in online social learning [26]. We extend these
lines of work to characterize LLM-based Al coding assistants.

III. METHODS
A. Defining “Al Coding Assistant” and Scoping Our Study

To realistically scope our study we first formed a definition
of “Al coding assistant” based on both our experiences as
software tools researchers and our observations of industry
developments. We define an Al coding assistant as an
LLM-based tool that generates code based on user inputs,
which can consist of human-written code snippets, natural
language requests via text or voice, direct-manipulation
gestures, or visual inputs such as sketches or screenshots.

Based on our definition, a tool does not need to exclusively
generate code in order to qualify as an Al coding assistant.
For instance, general-purpose LLM-based chatbots such as
ChatGPT and Claude qualify since users can prompt them
to generate code (in addition to many other tasks). Note that
even coding-specific tools like GitHub Copilot perform other
tasks too, such as explaining code or helping to debug.

We restrict our definition to LLM-based tools in order to
scope our study to modern Al coding assistants that began
around 2021 with the launch of GitHub Copilot. We ac-
knowledge that researchers have been working for decades on
several foundational lines of work that serve similar roles as
LLM AI coding assistants, such as PBD (Programming-by-
Demonstration), PBE (Programming-by-Example), program
synthesis tools [1], and earlier work on training neural net-
works on text-to-code embeddings [2]. These are out of scope
for our study; we refer readers to the 2020 workshop report
Deep Learning & Software Engineering: State of Research and
Future Directions [3] for an overview of pre-LLM research.

While we acknowledge that coding is only one part of the
entire software development lifecycle, we focus our study on

Al tools that directly help programmers to write new code.
Thus, we did not include the broader ecosystem of Al software
engineering tools that are specifically made for tasks such as
static analysis, log/trace analysis, automated debugging [27]-
[29], program repair [30], [31], DevOps, CI/CD, test suite
management, documentation, code reviews, or security audits.
We also excluded ‘no-code’ products that directly generate
apps without ever exposing the underlying code to users.

B. Gathering Al Coding Assistants in Academia and Industry

We looked for both academic and industry projects that fit
our definition at the time of writing in May 2025.

For academic projects we looked through the entire pro-
ceedings of major HCI and SE (software engineering) research
conferences from Jan 2021 to May 2025 and followed relevant
citations from those seed papers. These conferences were CHI,
UIST, CSCW, DIS, IUI, ICSE, OOPSLA, FSE, ASE, ISSTA,
and VL/HCC. We included only system papers that described
prototypes of new Al coding assistant tools, not empirical
studies of how people used existing tools like GitHub Copilot.
We also did not include purely algorithmic or ‘backend’
papers such as those that trained custom neural nets for code
retrieval [32], since they do not describe new user-facing tools.

For industry projects we searched online for relevant com-
pany webpages, product announcements, technical documen-
tation, blog posts, tech news items, industry conference talks,
YouTube videos, podcasts, and discussion forum posts (e.g., on
Hacker News) for any released products that fit our definition.
We also consulted with colleagues familiar with the latest work
in LLMs and software developer tools to augment our list.

C. Data Overview and Analysis

For each of the 90 systems that met our criteria, the research
team analyzed its features by reading relevant papers and
user guides/documentation, watching demo and talk videos,
and trying out selected tools that were publicly available. We
focused our qualitative analysis on technical features rather
than business-oriented ones such as pricing, licensing models,
or target markets. The research team met multiple times
to merge our notes, categorize them into themes using an
inductive analysis approach [33], and iterate until we could not
find additional features. To resolve inconsistencies in initial
rounds of classification, we discussed results iteratively in
team meetings with one researcher taking the lead on industry
systems and the other on academic systems, due to each having
more experience with those respective areas.

Then to formulate a design space from these features, we
followed a similar methodology as Segel and Heer [10], who
created a design space of narrative visualizations from content
analysis of interactive webpages, and Lau et al., who did
so for computational notebook systems [14]. Specifically, we
sought to distill generalizable concepts from specific Al coding
assistant features and surface which concepts were shared
across multiple instances. We made several iterations as a team
before finalizing our 10 dimensions, which are grounded in
user-facing features.

D. Study Design Limitations

We analyzed user-facing features of Al coding assistants,
but we did not formally evaluate their usability or performance
via user testing, benchmarks, or controlled experiments. We
did not cover pre-LLM coding assistants, so we may have
missed interaction modes that are unique to earlier systems.
We did not analyze differences in underlying LLMs (e.g., GPT-
4 vs. Deepseek) since they do not affect UI features. And while
we tried our best to be comprehensive, we cannot guarantee
that we found all available systems at the time of writing.

There is subjectivity in how we picked design space dimen-
sions, so other researchers may choose different ones. We did
not empirically validate our choices with the broader com-
munity of researchers or practitioners. Note that prior design
space analyses [10], [14] also relied solely on the expertise of
their authors to interpret the data. Both authors of our study
have relevant domain expertise: we have published papers on
Al coding tools, used them to build software systems, and
previously worked as software engineers in industry.

IV. OVERVIEW OF 90 AI CODING ASSISTANTS
A. Industry Products

We first summarize the 58 industry products that met our
selection criteria. Note that industry products often evolve over
time to incorporate new capabilities. Since we focus on the
evolution of user interaction with Al coding tools, we not only
included initial product releases but also updates that added
substantially different interaction paradigms (e.g., we count
regular ChatGPT and ChatGPT Canvas as separate systems).

Early LLM research from 2016-2020 developed models
capable of completing natural language for tasks such as
text summarization and reading comprehension. An emergent
property of these LLMs was their unexpected proficiency at
writing code, which was documented at least as early as
OpenAl GPT-2’s release in 2019 [34]. The earliest LLM-based
Al coding tool we found was Tabnine, which incorporated
GPT-2 in 2019 to auto-complete code fragments [35].

In 2020, GPT-3 was released [36], followed by Codex, a ver-
sion of GPT-3 specifically trained on code [37]. Codex became
the foundation for GitHub Copilot, released in 2021 [4]. Copi-
lot quickly gained popularity, partly due to its direct integration
into the Visual Studio Code (VS Code) IDE, and acquired over
one million paying users in its first two years [38]. Copilot’s
popularity inspired several other industry products released
soon after, including Amazon CodeWhisperer [39] and Replit
Al [40], both launched in mid-2022.

The release and immediate popularity of ChatGPT in late
2022 sparked an explosion of similar products [41]. ChatGPT
was the first to feature a conversational UI, which signif-
icantly aided its adoption. It was also capable of writing
and debugging code without requiring additional fine-tuning.
Between 2023 and 2025 many companies launched their
own foundation models with similar chatbot Uls, includ-
ing Google [42], Anthropic [43], Meta [44], Mistral [45],
Qwen [46], DeepSeek [47], and Databricks [48]. All these

chatbots could process code as input prompts and produce
code as outputs. (Note that we included only the most popular
LLM-based chatbots in this list, but there are many others.)

Aside from powering general-purpose chatbots, advances in
foundation models inspired a wave of products specifically
targeting software developers. Many resembled Copilot as they
were implemented as IDE extensions with autocomplete and
chat interfaces, such as Cline [49], Sourcegraph Cody [50],
the JetBrains Al Assistant [51], Continue.dev [52], chattr [53],
Tabby [54], and Gemini Code Assist [55].

Several products were designed to run within the terminal
on a user’s machine, including Warp [56], Aider [57], Claude
Code [58], and OpenAl Codex CLI [59] (which is, confus-
ingly, a different product than the original Codex from 2021).

Other products were built as standalone IDEs rather than
extensions to existing environments in order to implement
custom UI flows, most notably Cursor [60], Devin [61],
Zed [16], and Windsurf [62].

Also, Al coding assistants targeting data scientists became
integrated into existing computational notebooks, including
Colab [63], Deepnote [64], Observable [65], and Marimo [66].

Starting around 2024, industry also began exploring alter-
native forms of output beyond text and code. For example,
Claude Artifacts [67], ChatGPT Canvas [68], and Gemini
Canvas [69] generate code, execute it, and display the results to
users, which often consists of data visualizations or interactive
webpages. Some newer products went further by adding the
capability to generate and deploy full-stack web applications
from user prompts, Ul screenshots, or Figma design mockups
— e.g., Lovable [70], Firebase Studio [71], Vercel vO [72],
Townie [73], Bolt [74], and HeyBoss [75].

Updates since submission: In just the three months between
when we submitted this paper (May 2025) and when we
finalized it for publication (Aug 2025), many new industry
products have been released. These include command-line
interface tools (OpenAl Codex [76], Gemini CLI [77], gwen-
coder [78], Amp [79], OpenCode [80]), standalone IDEs
(nao [81], Void [82]), IDE extensions (Kiro [83]), agentic
tools (Jules [84], Factory [85], codename goose [86], Claude
Artifacts [87], Copilot Agent [88]), and tools for designers to
generate web Ul code (Figma Make [89], Google Stitch [90]).
Most of these fall into the same categories as existing tools
we analyzed. But one new trend is the emergence of tools that
orchestrate other tools: For example, Claude Squad [91] and
Conductor [92] enable users to run many instances of Claude
Code in parallel to act like a ‘fleet’ of software engineers.

B. Academic Prototype Systems

We now summarize the 32 systems described in academic
research papers in HCI and software engineering. Whereas
industry systems are end-to-end products meant for direct
consumer use, academic systems are often prototypes that
show a proof-of-concept of a single innovation.

The earliest paper we found was from 2022: GenLine [93]
from Google Research was developed around 2020-2021 at

the same time as GitHub Copilot, and it supported similar
goals of autocomplete-style code generation within an IDE.

We found only 3 papers from 2023, and incidentally all
three were about adding Al to data science environments. Col-
Deco [94] improves explainability for Al-generated code that
operates on tabular data. Grounded Abstraction Matching [95]
adds editable natural-language explanations of Al-generated
Python code for data science. And McNutt et al. designed a
range of Ul mock-ups to augment computational notebooks
with Al code completions [15]. We speculate that this early
work (done in 2020-2022, all before ChatGPT’s release') built
upon the growing momentum of data science tooling research
in HCI and software engineering leading up to 2020 [14].

ChatGPT launched at the end of 2022, followed by rapid
updates to LLM APIs (e.g., GPT-3.5, GPT-4) that researchers
could use to build prototypes. Thus, 2023 was when many
research groups started entering this space, culminating in 13
papers published in 2024. BISCUIT [96] and DynaVis [97]
continued the prior year’s trajectory of data science tooling by
using Al to synthesize bespoke analysis Uls; Interactive Task
Decomposition [98] and WaitGPT [99] also targeted data sci-
entists but focused more on helping them understand and steer
Al code generation. Ivie [100] and LEAP [101] improve Al
code autocompletion by adding inline explanations using static
and run-time information, respectively. ClarifyGPT [102], Co-
Ladder [103], and Language-Oriented Code Sketching [104]
augment plain-text prompts with scaffolding to improve code
generation quality. ChatScratch [105] and NetLogo Chat [106]
built specialized Al chatbots for educational programming en-
vironments. Lastly, CodeCompose [107] and StackSpot [108]
presented case studies of developing production-ready Al
coding assistants within large companies.

Momentum continued through 2025, where we found 15
papers at the time of writing. Some work continued the
“first era’ of Copilot-style Al code autocomplete, while others
pushed toward multimodal inputs, autonomous agents, and
emerging trends of ‘vibe coding’ (i.e., creating prototypes by
only prompting the AI but not looking at the code) [18].
For instance, CodeAlly [109] is like Copilot but ensures
that Al-generated code follows web accessibility guidelines.
Codellaborator [110] and Chen et al. [111] made proac-
tive Al code suggestions. Multimodal input systems such
as DCGen [112] generate Ul code from screenshots, while
Code Shaping [113] and Gomes et al. [114] take freehand
sketches and synthesize data science code, and Dango [115]
detects multimodal inputs on data tables. DBox [116] and
Kazemitabaar et al. [117] augment coding assistants for CS
education by adding UI affordances to make learners engage
more thoughtfully with Al-generated code. PAIL [118] and
intention-based code refinement [119] bridge the gap between
users specifying high-level software designs and getting an Al
to effectively generate code that is well-aligned with designer
intentions. PInG [120] augments prompts with editable code

'We assume a publication lag time of 1.5 to 2 years for building and
validating system prototypes and then getting peer-review papers published.

comments to help users steer LLM code generation, while
ROCODE [121] uses program analysis to steer the LLM
toward generating error-free code. Lastly, DynEx [122] and
Dream Garden [123] enable ‘vibe coding’ [18] by letting users
prototype an end-to-end app using high-level text prompts.

V. THE DESIGN SPACE OF AI CODING ASSISTANTS

We grouped the 10 design space dimensions from Figure 1
into four themes: user interface, system inputs, capabilities,
and outputs. We now present each dimension in turn.

A. User Interface

1) Development Environment: At first glance the most visible
property of an Al coding assistant is where it resides.

General-purpose chatbots like ChatGPT are browser-based,
so users must copy-paste Al-generated code from their web
browser into their own project files [41]. However, some
industry systems like Bolt [74], Townie [73], and Replit [40]
are full browser-based IDEs where code is run in-browser
as well. This is also common in systems that support data
science workflows, such as Deepnote [64], Observable [65],
Marimo [66], and Colab AI [63], which allow users to access
Al tools within web-based computational notebooks.

Others are command-line tools, including Aider [57],
Claude Code [58], OpenAl Codex CLI [59], and Warp [56].
Users chat with them in the terminal, where they can au-
tonomously read, edit, and create files on the user’s machine.

Many systems in both academia and industry are imple-
mented as IDE extensions or plug-ins, such as GitHub Copilot
for Visual Studio Code [38] and chattr for RStudio [53].
Integrating into an IDE allows for interactions like inline code
autocomplete, explanatory pop-ups, and chat sidebars.

Lastly, some industry products like Cursor [60], Wind-
surf [62], Tabby [54], and Zed [16] are standalone IDEs that
can integrate Al more deeply into their user interfaces without
the restrictions that IDEs typically impose on extensions.

2) User Actions: Next, systems differ in what kinds of user
actions invoke the Al assistant.

The simplest action, popularized by the original GitHub
Copilot in 2021, is tab autocomplete where the user sees
grayed-out ghost text of an Al code suggestion under their
cursor and can press Tab to accept it [124]. Newer versions
of Cursor, Windsurf, and Copilot take this idea farther by
automatically moving the cursor to the Al-predicted ‘next edit
location’ and generating related suggestions when the user hits
Tab multiple times in rapid succession [125]-[127].

Most systems support a single-turn prompt where the user
constructs a prompt to send to the Al assistant and directly
receives code. Most often, this prompt consists of text in-
structions, but multimodal LLMs support voice, images, or
even videos as prompt inputs. In addition, academic systems
like CoLadder [103] and DBox [116] allow users to construct
prompts using structured Uls, which the system frontend
compiles into a single text prompt to send to the LLM.

Systems that support multi-turn prompts extend single-turn
prompting by sometimes asking users for extra input rather

than generating the requested code immediately. For example,
tools such as ClarifyGPT [102], Windsurf [62], and Replit
Al [40] will ask the user clarification questions to better un-
derstand their requirements. Additionally, systems like Cursor
decompose a single prompt into sequential implementation
steps, requiring explicit user approval at each stage [60]. This
incremental approach aims to increase user control, especially
for more complex tasks.

3) Initiative: Most systems can be triggered by user-initiated
actions such as writing and submitting a text prompt. Some
academic prototypes such as Codellaborator [110] and Chen
et al. [111] implement proactive suggestions where the system
generates code or writes documentation in the background
without user initiation; Codellaborator also shows a second
edit cursor to make users aware of what the Al is proactively
doing, akin to seeing real-time edits on Google Docs.

A few systems are mixed-initiative — intertwining user-
and system-initiated actions. These include ‘steerable’ Al
assistants like WaitGPT [99] and Interactive Task Decompo-
sition [98] where the user can see what the LLM generates
in an interactive Ul and make adjustments on-the-fly. Many
industry systems support a narrow form of mixed-initiative
interaction by having user-initiated features alongside system-
initiated features. Most commonly, systems will provide a chat
interface that is entirely user-initiated while suggesting code
completions that are entirely system-initiated, similar to early
versions of GitHub Copilot [124] and JetBrains AI Assis-
tant [51]. However, we are unaware of industry systems that
provide mixed-initiative interactions within the same feature.

B. System Inputs

4) Input Format: What does the Al assistant take as input
from the user? All systems support freeform text, which can
be a mix of code and natural language instructions. Some
programmers use speech-to-text features of ChatGPT and
similar tools to talk to the AI, but that speech is simply
transcribed to text. ChatScratch [105] prioritizes voice input
in the UI since its target audience is young kids with limited
typing skills. Other academic systems like Language-Oriented
Code Sketching [104] and PInG [120] augment the user’s text
input with scaffolding to help the LLM generate better code.

Some systems support visual inputs such as screen-
shots/videos since they use multimodal LLMs (e.g., GPT-
4o [128]). The most relevant use case here is passing in a
UI design mock-up image and having it generate HTML/CSS
code that instantiates that design in code. These types of inputs
are supported by industry tools like Claude Code [58], and
recent versions of Gemini can even generate code based off of
videos that show users interacting with an application [129].
To improve code generation quality, academic systems like
DCGen [112] segment a screenshot into constituent UI com-
ponents before passing it to the LLM.

Going beyond screenshots, designer-oriented tools such as
v0, Bolt, and Lovable can take UI design files as input, most
commonly created by tools like Figma [70], [72], [74]. This

allows the Al to more reliably generate HTML/CSS/JavaScript
frontend code that instantiates a UI design mockup.

Another type of visual input is freehand sketches where the
user can draw a Ul and have the system generate skeleton
HTML/CSS code that matches the drawing; with additional
text prompting, the system can fill in color palettes and
other aesthetic customizations. Academic systems like Code
Shaping [113] take this idea further by connecting pen strokes
to on-screen elements like code and console output.

Some systems have custom interactive Uls for users to
precisely specify their inputs. For instance, industry tools like
Lovable [70] and HeyBoss [75] generate interactive webpages
as output and let users select a portion of that page to
reference in their follow-up prompts. Academic systems like
CoLadder [103] and Interactive Task Decomposition [98] have
Uls that scaffold more structured text inputs. And data science
oriented systems like ColDeco [94] and Dango [115] let users
select portions of data tables to prompt the Al assistant.

5) Semantic Context: Aside from direct user inputs, systems
automatically collect context from the user’s codebase and
surrounding artifacts when constructing an LLM prompt.
Early systems like the original GitHub Copilot had only
local line context where it would copy the lines of code sur-
rounding the user’s cursor into the prompt [124]. Since older
LLMs had small context windows (roughly 4000 ‘words’),
an entire source file may not fit into one query. As context
windows grew larger, systems were able to pull in entire active
files that the user opened or edited recently in their IDE.
However, these approaches still treat source files as plain
text, so other systems improved on this by doing code analysis
to surface semantically meaningful context for the LLM. For
instance, Sourcegraph Cody and Windsurf do static analysis
to summarize the structure of large codebases that are too
big to fit in the context window [50], [126]. ROCODE [121]
integrates static analysis into the LLM’s token generation
algorithm to allow it to error-correct. And tools like Clar-
ifyGPT [102] do automatic test case generation, mutation
testing, and dynamic analysis to enrich LLM prompts.
Another form of context involves tracking user activity
within the IDE. For instance, agentic IDEs like Windsurf
track what the user has edited recently and what terminal
commands they have run to include as context when the agent
operates on the user’s behalf [130]. Proactive Al assistants
like Codellaborator [110] track when the user has momentarily
paused editing in order to pop up timely proactive suggestions.
Systems can also grab context outside the user’s codebase
by calling out to tools like web search. Most commonly, this
is used to fetch technical documentation and usage exam-
ples for imported libraries. For example, Continue.dev can
automatically retrieve public library documentation [52], and
Sourcegraph Cody can search for internal documentation by
integrating with common industry tools like Notion for notes
and Prometheus for system monitoring [50].

6) Personalization: AI coding assistants are frontends to
underlying foundation models such as GPT-4, so many support

model customization by letting the user select an LLM and
inputting an API key for payment. In addition, products such
as Tabnine allow enterprise users to fine-tune their own model
on their company’s internal codebase [131].

In addition, systems like Cursor, Windsurf, and Claude
Code support project rules written as Markdown text files
where the user specifies project-wide coding conventions,
domain knowledge, and library versions; those systems can
also analyze the user’s codebase to help them draft those
rules [58], [130], [132]. These project rules get automatically
included in the LLM prompts and guide the system to generate
new code that is consistent with the existing codebase.

Systems such as ChatGPT, Gemini, and Windsurf have
persistent memory features that remember past conversations
so they can better personalize suggestions [130], [133]. These
features take advantage of growing context windows in modern
LLMs: For reference, GPT-3.5, which powered the original
ChatGPT release in late 2022, has a context of 4096 tokens,
while Gemini can take up to 2 million input tokens as of 2025.

C. System Capabilities

7) Autonomy: Both academic and industry systems have
trended toward more autonomy over time, with the baseline
being none — the user initiates an action and the system
constructs a single LLM prompt in response.

A partial form of autonomy is self-correction where the
system iteratively applies an Al-produced code edit, runs the
code, and if there is an error, tries to correct it by passing the
error message to the LLM and seeing if it can generate a fix.
One notable example is Cline, which can double-check gener-
ated code by opening the user’s web browser and interacting
with the web application to detect mistakes [134]. Academic
systems like ROCODE [121] implement self-correction by
altering the LLM’s token generation algorithm so that it can
backtrack and error-correct within a single invocation.

Recent academic papers like DynEx [122] and Dream
Garden [123], along with the latest updates from industry
products like Devin [61], Windsurf [62], Cursor [60], and
Claude Code [58], have been working toward autonomous
agents where a single user prompt can trigger the assistant
to make multiple LLM queries, analyze their responses, edit
different parts of the codebase, run terminal commands, and
modify the filesystem on the user’s behalf. As a safety net,
the user can review and approve agent actions, or they can let
it run fully autonomously. Agents can spawn their own sub-
agents that run in background processes. The user experience
challenge here is supporting the human in reviewing edits
made by multiple agents that touch different parts of the
codebase and finish at unpredictable times. There is a risk
that these agents’ edits may overlap or clash with each other.

8) System Actions: In addition to generating code suggestions
for users to consider, Al assistants can also perform a variety
of actions. These range from traversing the entire codebase to
point out what other related locations the user may consider
editing to automatically creating and editing files on the user’s
behalf. Assistants can also be running and testing code in

the background, report their results to the user, and (if given
permission) automatically patch the code to fix runtime errors.
This pattern is especially common for command-line tools
such as Codex CLI [59] and Aider [57]. Lastly, assistants
are now calling external tools such as web search (e.g., Con-
tinue.dev [52]), static analysis (e.g., Sourcegraph Cody [50]),
and a growing ecosystem of developer tools connected via the
emerging standard of MCP (Model Context Protocol) [135].

D. System Outputs

9) Output Format: Al coding assistants present their outputs
in diverse formats ranging from inline code suggestions at
the user’s cursor position in an IDE (e.g., Copilot [124],
Windsurf [62], Zed [16]) to generating code blocks that either
display standalone (e.g., ChatGPT web interface) or in an IDE.
They may augment code with natural language explanations
in either an inline format like Ivie [100] or in a separate
explanation pane like Grounded Abstraction Matching [95].
And some generate interactive outputs: for example, industry
products like ChatGPT Canvas [68], Gemini Canvas [69] and
Claude Artifacts [58] generate interactive web frontends that
users can test directly in their browser. Academic systems like
DynaVis explored bespoke output visualization widgets [97]
and UI overlays that encourage users to critically engage
with the generated code rather than quickly accepting the
AT’s suggestions [117]. Lastly, a growing number of industry
tools produce production-ready server deployments that not
only have interactive frontends but also have backends that
enable data persistence, such as Townie [73], Replit Al [40],
Bolt [74], Lovable [70], and vO [72].

10) Explainability: Our final dimension include ways for the
Al assistant to explain its actions. The most straightforward
form is static code explanations first implemented by industry
tools like GitHub Copilot [4] that provide explanations for
generated code, then extended by academic systems like
Ivie [100] and Grounded Abstraction Matching [95].

Some academic systems go further by running the Al-
generated code and presenting dynamic visualizations of run-
time values (e.g., ColDeco [94], LEAP [101], WaitGPT [99]).

Chat-based systems can give reasoning traces to show their
internal step-by-step ‘thought’ process to make it clearer to
users why they chose to generate a certain piece of code,
which is common for systems that use reasoning models like
Deepseek R1 [47]. Academic systems like Interactive Task
Decomposition [98] augment these traces with a lightweight
UI to allow users to edit those traces and re-run to refine their
original query. Relatedly, McNutt et al. [15] prototyped other
forms of reasoning traces like showing LLM confidence levels
and alternative token choices in computational notebooks.

LLM-generated explanations may also include references to
primary sources (e.g., documentation webpages) or other parts
of the user’s codebase. One notable example is a recent update
to GitHub Copilot which notifies the user when Al-generated
code matches public open-source code on GitHub [136].

Lastly, Al-enabled IDEs like Windsurf and Zed show diff
previews of proposed edits that agents are about to make,

often spread throughout different parts of the codebase, so
that users can review and approve changes, much like doing
a code review [16], [126].

VI. DISCUSSION

High-Level Observations: One recurring observation as we
performed this research was how hard it could be to find out
precisely what some industry products did. Product webpages
can be filled with marketing hype and superlative language,
and articles about these products often copy that overhyped
style from company press releases. For instance, the homepage
of one of the most popular ones, Windsurf, describes its IDE
as “where the work of developers and Al truly flow together,
allowing for a coding experience that feels like literal magic.”
When clicking through to the Features page, we were met
by the headline: “So what can you do with this tool? It’s
so powerful that you’ll wonder what you can’t do.” Thus,
to cut through all the hype we needed to dig into technical
documentation, watch tutorial videos made by outside users,
and try using some of the tools ourselves.

In contrast, academic papers strive to present a more bal-
anced assessment of the systems they describe and then situate
those systems within the landscape of related work. Also,
each paper describes a particular targeted innovation along one
dimension of our design space, rather than being an end-to-end
product that innovates along multiple dimensions.

Both industry and academic work progressed through
the same three eras so far: 1) tab autocomplete in 2021-
2022, 2) chat-based interactions in 2023-2024, 3) toward
autonomous agents in 2024-2025. Major industry products
like GitHub Copilot, Cursor, and Windsurf now incorporate
all three modes into a single general-purpose IDE. In contrast,
academic papers prototype a single interaction in more detail
or explore a paradigm for a specific domain (e.g., DreamGar-
den implements agents for game programming [123]).

The Need for Speed vs. The Wisdom of Waiting: A major
theme we saw across many industry products was their em-
phasis on improving coding speed. For instance, the features
webpage for Cursor has the headline “Features: Build software
faster” and one of its most prominent features is described
as “Tab, tab, tab. Cursor lets you breeze through changes
by predicting your next edit.” Similarly, Zed’s tagline is
“Code at the speed of thought.” With speed as an overarching
goal, industry products push our design space toward more
autonomy via agents and lower friction in user interactions
(i.e., tab tab tab). This likely aligns with commercial interests,
since potential customers and investors are attracted to the
promise of helping programmers to get more work done faster.

But is faster always better? Academic projects can chal-
lenge this assumption since they do not need to optimize for
commercial goals. Most notably, Kazemitabaar et al. prototype
Al coding assistants that slow down the user by introducing
“Friction-Induced AI, wherein the AI does not allow users
to use its generated solution immediately. Instead, it engages
the user in the process of generation, while challenging them

and providing opportunities for reflection. [...] it refers to tem-
porarily slowing the user’s interaction, ensuring they engage
critically, rather than passively using AI’s output.” [117] And
projects like PAIL [118], DynEx [122] and intention-based
code refinement [119] scaffold users to take their time to
critically reflect on and refine their designs rather than blasting
them with Al-generated code as fast as possible. Thus, we
believe academia is better-positioned to innovate along these
dimensions due to lack of direct market pressures.

Feature Convergence (industry) vs. Divergence (academia):
In the first four years of LLM-based Al coding assistants
(2021-2025), companies have invested large amounts of
money and personnel into creating products that compete for
market share. We noticed a ‘convergent evolution’ in design
ideas where products built by different companies end up with
similar feature sets over time. Most notably, starting in 2024
many products added support for Al agents with multi-prompt
reasoning and external tool calling. Perhaps this phenomenon
is partly due to user needs being similar, so these companies
all get the same kinds of user testing results and customer
feedback that inform their development plans. Another reason
may be them deciding to purposely copy popular features from
competitors using a ‘fast-follow’ strategy that is common in
tech, as summarized by the creator of Townie [73]. Industry is
well-positioned to hone in on immediate user needs and put in
the engineering effort necessary to polish the user experience.
In contrast, academic publications by definition need to
be clearly differentiated from prior work, so we saw more
diversity in interaction modalities across our ten design space
dimensions. For instance, systems like CoLadder [103] and
Interactive Task Decomposition [98] experimented with more
elaborate interactive Uls to help users refine their prompts.
Relatedly, since researchers are not constrained by adding
features that appeal to a mass market of customers, they can
target niche domains (e.g., ChatScratch [105] for kids) or
prototype more esoteric features. This freedom enables them
to prototype more divergent interfaces than what companies
are willing to invest in, which in turn may inspire the next
generation of Al coding assistants that go beyond today’s user
needs. That said, skeptics can argue that academic ideas may
not be based on compelling user needs and may lead to user
experiences that are too complex for widespread adoption.

Who Are Al Coding Assistants For? Six User Personas

The term “Al coding assistant” is very broad. But who
exactly is being assisted by the AI? In other words, what kinds
of people use these tools, and what Ul affordances might they
want? To spark discussion here we can use our design space
in Figure 1 to map selected dimensions to user preferences.
Figure 2 shows six user personas that we propose:

1) Professional Software Engineers are the primary target
users for many industry products. They likely prefer advanced
development environments consisting of command-line and
IDE-based tools (see blue highlights in Figure 2). They need
tools to provide a lot of semantic context since they are
working within large established codebases in their jobs (rather

Professional Software Engineers

Development Browser-based 1 Command-Line Tool IDE Extension Standalone IDE:
Environment

Semantic Local Line Context i Active Files Code Analysis User Activity Wb Search
Context I
Personalization | Model Customization ~~— Project Rules Persistent Mermory

HCI Researchers and Hobbyist Programmers

Development Browser-based Command-Line Tool : IDE Extension Standalone IDE !

Environment

Autonomy None iSeff-Comection - ___._........... Adtonomous Agent:

Output Format Inline Code Code Blocks Natural Language InteractweOutputs Server Deployment
Suggestions

UX Designers

Input Format ~ Freeform Text ——i Ul Screenshots / Videos Ul Design Files :—— Freehand Sketches Interactive Ul

Output Format Inline Code Code Blocks Natural Language E_IrJ’EQr_a_c_:t_i_/t_e_(_)_u_tht_s_ Server Deployment
Suggestions

Conversational Programmers (e.g. Entrepreneurs, Product Managers, Sales, Marketing)

Development E_B_r_o_v_v_s_e_r:k_ng_sg_d_i Command-Line Tool IDE Extension Standalone IDE
Environment

Autonomy None Self-Correction : Autonomous Agent
OutputFormat nine Code Godo Bocks el Language R8s Oipis. - Sorvr DSpoyant

Suggestions

Data Scientists

Input Format | Freeform Text i Ul Screenshots / Videos —— Ul Design Files - Freehand Sketches -~ Interactive Ul
Explainabiity ; Code Explanations i Runtime Values i Reasoning Trace i References -+ Diff Previews

Autonomy } None : Self-Correction Autonomous Agent

Explainability i Code Explanations Runtime Values Reasoning Trace : References Diff Previews

Fig. 2. Six example user personas that represent common users of Al coding assistants. For each one we show selected dimensions from the design space of
Figure 1 with highlights to represent what kinds of system features they might prefer. (To save space we do not show all 10 dimensions for each persona.)

than making apps from scratch). And they want a high degree
of personalization using custom models and project rules.

2) HCI Researchers and Hobbyist Programmers are
similar to software engineers in that they want control over
the code, except they are working on prototypes of new ideas
rather than extending an existing production codebase. They
may prefer having Al generate blocks of code for them to
tweak and produce interactive outputs such as demo web apps.

3) UX Designers have also been finding these tools useful
for their work, especially designer-focused systems like Bolt,
v0, and Lovable. They are able to use them to make interactive
code prototypes that are more bespoke and high-performance
than what is possible in design tools like Figma (e.g., involv-
ing advanced WebGL or HTML Canvas animations). These
working prototypes enable them to communicate better with
software engineers when discussing how to implement real
product ideas. As such, Figure 2 shows that designers value
being able to input UI screenshots, animation videos, and Ul
design files from Figma into Al coding assistants; they also
likewise want interactive outputs such as dynamic webpages.

4) Conversational Programmers (e.g., entrepreneurs,
product managers, executives, sales, marketing) is a term
coined by Chilana et al. [17] to refer to professionals who
want to communicate better with programmers but who do not
themselves know how to code. These people can now prompt
Al to create demos of their visions without reading the code
(i.e., ‘vibe coding’ [18]). Thus, they may prioritize browser-
based Al agents that can generate interactive web outputs and
deploy full-stack apps without any coding.

5) Data Scientists and other computational scientists value
correctness and explainability since they want to ensure that
their analyses are robust. They want to be able to easily read
Al-generated code and understand how each line works so that
they can gain some confidence that the code is processing
their data in the intended way. Unlike UX designers and
conversational programmers, they may not care as much about
elaborate user interfaces or multimedia inputs/outputs.

6) Students Learning to Code are best served by
projects like ChatScratch [105], DBox [116], prototypes by
Kazemitabaar et al. [117], and other hint-generation and
scaffolding tools for CS Education [137]. These tools should
not be autonomous since students must learn to write and
understand code themselves. Explainability is also important
for students, since the pedagogical goal is to use code as
a means for learning computational concepts rather than to
produce professional-quality software.

Tradeoffs in Design Space Dimensions: Aside from clarify-
ing user personas, our design space also lets Al tool developers
debate tradeoffs in both user experience and engineering effort.
Here are some examples for each dimension:

1) Development Environment: there is a tradeoff between
ease-of-access (browser-based tools like Val Town’s Townie)
and power/customizability (standalone IDEs like Cursor).
2) User Actions: tab autocomplete can keep the user in
flow longer while they are coding, but multi-turn prompts

can give the Al more context albeit at the cost of greater
user effort. 3) Initiative: tradeoffs in the user’s feeling of
control and understanding about what the tool is doing for
them — proactive and mixed-initiative tools give up some
user control for more serendipity. 4) Input Format: supporting
non-text inputs requires more powerful multimodal models
and engineering custom Uls atop them. 5) Semantic Context:
supporting more context requires more powerful models and
the engineering effort to integrate those models into products.
6) Personalization: tradeoffs between ease-of-use for novices
and customizability for power users. 7) Autonomy: greater Al
autonomy leads to less user control and reduced ability for
a human to debug when the AI makes mistakes. 8) System
Actions: similarly, the more actions an Al can take, the more
that things can go wrong behind-the-scenes without the user
even noticing. 9) Output Format: more elaborate outputs could
be overwhelming to novice users. 10) Explainability: more
advanced explanation formats may cause cognitive overload
due to too many UI elements shown on-screen while coding.
Broadly speaking, even across dimensions, the more that Al
does for the human user, the harder it can be for novices to
develop the critical thinking skills [138] necessary to become
more advanced users of Al. Experts may benefit a lot from
greater automation, but novices may be denied the opportunity
or motivation to develop deeper expertise in the first place.

VII. CONCLUSION: CAN WE BRIDGE The Two Cultures OF
ACADEMIA AND INDUSTRY?

We presented the first survey of 90 LLM-based Al cod-
ing assistants drawn from both industry (58 products) and
academia (32 papers). Using this design space, we identified
three UI eras so far (autocomplete, chat, agents) and overar-
ching trends of industry products converging in feature sets
around speed while academic prototypes pursue more diverse
goals. Lastly, we propose six user personas to address “Who
are Al coding assistants for?” and discussed how each may
prioritize tools along different regions of our design space.

In 1959 novelist and scientist C. P. Snow warned that the rift
of The Two Cultures between the science and humanities could
hinder progress in solving important problems [139]. In doing
this research we noticed a similar “Two Cultures’ split between
academic and industry work in Al coding assistants where
both march along in parallel without much acknowledgment
of the other side’s contributions. Lau et al. noted the same
split in 2020 with regard to computational notebook research
and products [14]. The career incentives, level of resources,
and working structures differ so much that perhaps cross-
dissemination of ideas is not feasible: Academia lacks the
tremendous engineering resources and money required to build
and experiment on production-scale systems, while industry
lacks the market incentives to deploy research innovations that
are too critical of Al’s capabilities. However, we feel that each
has much to offer the other side, and closer integration can
move the field forward. The open question is: how can we
bridge the two cultures gap in the years to come?

ACKNOWLEDGMENTS

Thanks to Irene Hou for help with proofreading.

(1]

[2]

[3]

(4]

[3]
(6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

S. Gulwani, O. Polozov, R. Singh et al., “Program synthesis,” Foun-
dations and Trends® in Programming Languages, vol. 4, no. 1-2, pp.
1-119, 2017.

X. Rong, S. Yan, S. Oney, M. Dontcheva, and E. Adar, “Codemend:
Assisting interactive programming with bimodal embedding,” in
Proceedings of the 29th Annual Symposium on User Interface
Software and Technology, ser. UIST *16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 247-258. [Online].
Available: https://doi.org/10.1145/2984511.2984544

P. Devanbu, M. Dwyer, S. Elbaum, M. Lowry, K. Moran, D. Poshy-
vanyk, B. Ray, R. Singh, and X. Zhang, “Deep learning & software
engineering: State of research and future directions,” arXiv preprint
arXiv:2009.08525, 2020.

D. Gershgorn, “GitHub and OpenAl launch a
new Al tool that generates its own code,”
https://www.theverge.com/2021/6/29/22555777/github-openai-ai-
tool-autocomplete-code, Jun. 2021.

M. Welsh, “The end of programming,” Communications of the ACM,
vol. 66, no. 1, pp. 34-35, 2022.

T. O’Reilly. (2025) The end of programming as we know it. [Online].
Available: https://www.oreilly.com/radar/the-end-of-programming-as-
we-know-it/

S. Duranton. (2024) Are coders’ jobs at risk? ai’s
impact on the future of programming. [Online]. Avail-
able: https://www.forbes.com/sites/sylvainduranton/2024/04/15/are-
coders-jobs-at-risk-ais-impact-on- the- future-of-programming/

B. Hartmann, L. Yu, A. Allison, Y. Yang, and S. R. Klemmer,
“Design as exploration: Creating interface alternatives through parallel
authoring and runtime tuning,” in Proceedings of the 21st Annual ACM
Symposium on User Interface Software and Technology, ser. UIST *08.
New York, NY, USA: Association for Computing Machinery, 2008, p.
91-100. [Online]. Available: https://doi.org/10.1145/1449715.1449732
J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer,
“Example-centric programming: Integrating web search into the
development environment,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’10. New
York, NY, USA: ACM, 2010, pp. 513-522. [Online]. Available:
http://doi.acm.org/10.1145/1753326.1753402

E. Segel and J. Heer, “Narrative visualization: Telling stories with
data,” IEEE Transactions on Visualization and Computer Graphics,
vol. 16, no. 6, pp. 1139-1148, Nov 2010.

T. Horak, A. Mathisen, C. N. Klokmose, R. Dachselt, and N. Elmqyvist,
“Vistribute: Distributing interactive visualizations in dynamic multi-
device setups,” in Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, ser. CHI *19. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3290605.3300846

G. W. Fitzmaurice, H. Ishii, and W. A. S. Buxton, “Bricks: Laying
the foundations for graspable user interfaces,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’95. USA: ACM Press/Addison-Wesley Publishing Co., 1995, p.
442-449. [Online]. Available: https://doi.org/10.1145/223904.223964
I. Drosos and P. J. Guo, “The design space of livestreaming
equipment setups: Tradeoffs, challenges, and opportunities,” in
Proceedings of the 2022 ACM Designing Interactive Systems
Conference, ser. DIS ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 835-848. [Online]. Available:
https://doi.org/10.1145/3532106.3533489

S. Lau, I. Drosos, J. M. Markel, and P. J. Guo, “The design space of
computational notebooks: An analysis of 60 systems in academia and
industry,” in 2020 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), 2020, pp. 1-11.

A. M. McNutt, C. Wang, R. A. DeLine, and S. M. Drucker, “On
the Design of Al-Powered Code Assistants for Notebooks,” in CHI
’23: Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems. New York, NY, USA: Association for Computing
Machinery, 2023, pp. 1-16.

N. Sobo, “Introducing Zed Al - Zed Blog,” https://zed.dev/blog/zed-ai,
Aug. 2024.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

P. K. Chilana, R. Singh, and P. J. Guo, “Understanding conversational
programmers: A perspective from the software industry,” in
Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems, ser. CHI ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 1462—-1472. [Online]. Available:
https://doi.org/10.1145/2858036.2858323

S. Willison. (2025) Not all Al-assisted programming is vibe coding
(but vibe coding rocks). [Online]. Available: https://simonwillison.net/
2025/Mat/19/vibe-coding/

C. Bird, D. Ford, T. Zimmermann, N. Forsgren, E. Kalliamvakou,
T. Lowdermilk, and I. Gazit, “Taking flight with copilot: Early
insights and opportunities of ai-powered pair-programming tools,”
Queue, vol. 20, no. 6, p. 35-57, Jan. 2023. [Online]. Available:
https://doi.org/10.1145/3582083

P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs.
experience: Evaluating the usability of code generation tools powered
by large language models,” in Extended Abstracts of the 2022 CHI
Conference on Human Factors in Computing Systems, ser. CHI EA
’22. New York, NY, USA: Association for Computing Machinery,
2022. [Online]. Available: https://doi.org/10.1145/3491101.3519665
S. Barke, M. B. James, and N. Polikarpova, “Grounded copilot:
How programmers interact with code-generating models,” Proc. ACM
Program. Lang., vol. 7, no. OOPSLAI, Apr. 2023. [Online]. Available:
https://doi.org/10.1145/3586030

R. Khojah, M. Mohamad, P. Leitner, and F. G. de Oliveira Neto,
“Beyond code generation: An observational study of chatgpt usage
in software engineering practice,” Proc. ACM Softw. Eng., vol. 1, no.
FSE, Jul. 2024. [Online]. Available: https://doi.org/10.1145/3660788
J. T. Liang, C. Yang, and B. A. Myers, “A large-scale survey on
the usability of ai programming assistants: Successes and challenges,”
in Proceedings of the IEEE/ACM 46th International Conference
on Software Engineering, ser. ICSE '24. New York, NY, USA:
Association for Computing Machinery, 2024. [Online]. Available:
https://doi.org/10.1145/3597503.3608128

R. Wang, R. Cheng, D. Ford, and T. Zimmermann, “Investigating
and designing for trust in ai-powered code generation tools,” in
Proceedings of the 2024 ACM Conference on Fairness, Accountability,
and Transparency, ser. FAccT °24. New York, NY, USA: Association
for Computing Machinery, 2024, p. 1475-1493. [Online]. Available:
https://doi.org/10.1145/3630106.3658984

M. R. Morris, C. J. Cai, J. Holbrook, C. Kulkarni, and M. Terry,
“The design space of generative models,” 2023. [Online]. Available:
https://arxiv.org/abs/2304.10547

Q. Wang, I. Camacho, S. Jing, and A. K. Goel, “Understanding
the design space of Al-mediated social interaction in online
learning: Challenges and opportunities,” Proc. ACM Hum.-Comput.
Interact., vol. 6, no. CSCWI1, Apr. 2022. [Online]. Available:
https://doi.org/10.1145/3512977

K. H. Levin, N. van Kempen, E. D. Berger, and S. N. Freund,
“Chatdbg: Augmenting debugging with large language models,” in
Proceedings of the ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE), 2025. [Online]. Available:
https://arxiv.org/abs/2403.16354

Y. Bajpai, B. Chopra, P. Biyani, C. Aslan, D. Coleman,
S. Gulwani, C. Parnin, A. Radhakrishna, and G. Soares, “Let’s
Fix this Together: Conversational Debugging with GitHub Copilot,”
in 2024 [EEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). Los Alamitos, CA, USA: IEEE
Computer Society, Sep. 2024, pp. 1-12. [Online]. Available: https:
//doi.ieeecomputersociety.org/10.1109/VL/HCC60511.2024.0001 1

C. S. Xia, Y. Deng, S. Dunn, and L. Zhang, “Agentless: Demystifying
LLM-based Software Engineering Agents,” in Proceedings of the
2025 ACM SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE ’25), 2025.

1. Bouzenia, P. T. Devanbu, and M. Pradel, “RepairAgent: An Au-
tonomous, LLM-Based Agent for Program Repair,” in ICSE ’25: Pro-
ceedings of the 47th International Conference on Software Engineering,
2025.

Y. Zhang, H. Ruan, Z. Fan, and A. Roychoudhury, “AutoCodeRover:
Autonomous Program Improvement,” in ISSTA ’*24: Proceedings of the
33rd ACM SIGSOFT International Symposium on Software Testing and
Analysis. New York, NY, USA: Association for Computing Machinery,
2024, pp. 13-24.

https://doi.org/10.1145/2984511.2984544
https://www.oreilly.com/radar/the-end-of-programming-as-we-know-it/
https://www.oreilly.com/radar/the-end-of-programming-as-we-know-it/
https://www.forbes.com/sites/sylvainduranton/2024/04/15/are-coders-jobs-at-risk-ais-impact-on-the-future-of-programming/
https://www.forbes.com/sites/sylvainduranton/2024/04/15/are-coders-jobs-at-risk-ais-impact-on-the-future-of-programming/
https://doi.org/10.1145/1449715.1449732
http://doi.acm.org/10.1145/1753326.1753402
https://doi.org/10.1145/3290605.3300846
https://doi.org/10.1145/223904.223964
https://doi.org/10.1145/3532106.3533489
https://doi.org/10.1145/2858036.2858323
https://simonwillison.net/2025/Mar/19/vibe-coding/
https://simonwillison.net/2025/Mar/19/vibe-coding/
https://doi.org/10.1145/3582083
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3586030
https://doi.org/10.1145/3660788
https://doi.org/10.1145/3597503.3608128
https://doi.org/10.1145/3630106.3658984
https://arxiv.org/abs/2304.10547
https://doi.org/10.1145/3512977
https://arxiv.org/abs/2403.16354
https://doi.ieeecomputersociety.org/10.1109/VL/HCC60511.2024.00011
https://doi.ieeecomputersociety.org/10.1109/VL/HCC60511.2024.00011

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]
[41]
[42]
[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

Y. Wang, Y. Wang, D. Guo, J. Chen, R. Zhang, Y. Ma, and
Z. Zheng, “RLCoder: Reinforcement Learning for Repository-Level
Code Completion,” in 2025 IEEE/ACM 47th International Conference
on Software Engineering (ICSE). Los Alamitos, CA, USA: IEEE
Computer Society, May 2025, pp. 165-177. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00014

J. M. Corbin and A. L. Strauss, Basics of qualitative research:
techniques and procedures for developing grounded theory. SAGE
Publications, Inc., 2008.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAl blog,
vol. 1, no. 8, p. 9, 2019.

J. Vincent, “This Al-powered autocompletion soft-
ware is Gmail’s Smart Compose for coders,”
https://www.theverge.com/2019/7/24/20708542/coding-autocompleter-
deep-tabnine-ai-deep-learning-smart-compose, Jul. 2019.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, and A. Askell, “Language models
are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877-1901, 2020.

OpenAl, “OpenAl Codex,” https://openai.com/index/openai-codex/,
Aug. 2021.

T. Ray, “Microsoft has over a million paying Github Copi-
lot users: CEO Nadella,” https://www.zdnet.com/article/microsoft-has-
over-a-million-paying-github-copilot-users-ceo-nadella/, Oct. 2023.

F. Lardinois, “Amazon launches CodeWhisperer, a GitHub Copilot-like
Al pair programming tool,” Jun. 2022.

A. Masad, “Replit — Ghostwriter AI & Complete Code Beta,”
https://blog.replit.com/ai, Sep. 2022.

OpenAl, “Introducing ChatGPT,” https://openai.com/index/chatgpt/,
Nov. 2022.

N. Grant and C. Metz, “Google Releases Bard, Its Competitor in the
Race to Create A.I. Chatbots,” The New York Times, Mar. 2023.

S. Goldman, “OpenAl rival Anthropic introduces Claude, an Al assis-
tant to take on ChatGPT,” Mar. 2023.

K. Leswing, “Mark Zuckerberg announces Meta’s new large language
model as A.L race heats up,” https://www.cnbc.com/2023/02/24/mark-
zuckerberg-announces-meta-llama-large-language-model.html, Feb.
2023.

D. Coldewey, “Mistral AI makes its first large language model free for
everyone,” Sep. 2023.

T. Qu, “Alibaba opens Tongyi Qianwen model to public
as new CEO embraces Al https://www.scmp.com/tech/big-
tech/article/3234385/alibaba-opens-ai-model-tongyi-qianwen-public-
competition-baidu-tencent-and-other-chinese-big-tech, Sep. 2023.
DeepSeek-Al, X. Bi, D. Chen, G. Chen, S. Chen, D. Dai, C. Deng,
H. Ding, K. Dong, Q. Du, Z. Fu, H. Gao, K. Gao, W. Gao, R. Ge,
K. Guan, D. Guo, J. Guo, G. Hao, Z. Hao, Y. He, W. Hu, P. Huang,
E. Li, G. Li, J. Li, Y. Li, Y. K. Li, W. Liang, F. Lin, A. X. Liu,
B. Liu, W. Liu, X. Liu, X. Liu, Y. Liu, H. Lu, S. Lu, E. Luo, S. Ma,
X. Nie, T. Pei, Y. Piao, J. Qiu, H. Qu, T. Ren, Z. Ren, C. Ruan,
Z. Sha, Z. Shao, J. Song, X. Su, J. Sun, Y. Sun, M. Tang, B. Wang,
P. Wang, S. Wang, Y. Wang, Y. Wang, T. Wu, Y. Wu, X. Xie, Z. Xie,
Z. Xie, Y. Xiong, H. Xu, R. X. Xu, Y. Xu, D. Yang, Y. You, S. Yu,
X. Yu, B. Zhang, H. Zhang, L. Zhang, L. Zhang, M. Zhang, M. Zhang,
W. Zhang, Y. Zhang, C. Zhao, Y. Zhao, S. Zhou, S. Zhou, Q. Zhu, and
Y. Zou, “DeepSeek LLM: Scaling Open-Source Language Models with
Longtermism,” Jan. 2024.

Databricks, “Introducing DBRX: A New State-of-the-Art Open LLM,”
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-
Ilm, Wed, 03/27/2024 - 11:34.

S. Rizwan, “My submission to Anthropic’s Build with Claude June
2024 hackathon: Claude Dev [later renamed to Cline], an autonomous
software engineer right in your IDE. Open Source and Available on
VSCode Marketplace Now! Reddit Post in r/ClaudeAl,” Jul. 2024.

B. Liu, “Open sourcing Cody | Sourcegraph Blog,’
https://sourcegraph.com/blog/open-sourcing-cody, Mar. 2023.

D. Jemerov, “Al Assistant in JetBrains IDEs | The Intelli] IDEA
Blog,” https://blog.jetbrains.com/idea/2023/06/ai-assistant-in-jetbrains-
ides/, Jun. 2023.

T. Dunn, “Show HN: Continue — Open-source coding autopilot | Hacker
News,” https://news.ycombinator.com/item?id=36882146, Jul. 2023.

[53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]

[61]
[62]

[63]

[64]
[65]

[66]

[67]

[68]

[69]

[70]
[71]
[72]
[73]

[74]

[75]

[76]

(771

[78]
[79]
[80]

[81]

[82]

[83]

E. Ruiz, “Posit Al Blog: Chat with Al in RStudio,”
https://blogs.rstudio.com/tensorflow/posts/2024-04-04-chat-with-
llms-using-chattr/, Apr. 2024.

M. Zhang, “Introducing First Stable Release: V0.0.1 | Tabby AI cod-
ing assistant,” https://www.tabbyml.com/blog/first-stable-release, Aug.
2023.

R. Salva, “Get coding help from Gemini Code Assist —
now for free,” https://blog.google/technology/developers/gemini-code-
assist-free/, Feb. 2025.

F. Lardinois, “Warp brings an Al bot to its terminal,” Mar. 2023.
Aider, “Aider Release history,” https://aider.chat/HISTORY.html, Jun.
2023.

Anthropic, “Claude 3.7 Sonnet and Claude
https://www.anthropic.com/news/claude-3-7-sonnet, Feb. 2025.
OpenAl, “OpenAl Codex CLI,” Apr. 2025.

K. Wiggers, “Anysphere raises $8M from OpenAl to build an Al-
powered IDE,” Oct. 2023.

S. Wu, “Introducing Devin, the first AI software engineer,”
https://cognition.ai/blog/introducing-devin, Mar. 2024.

Windsurf, “Windsurf Launch,” https://windsurf.com/blog/windsurf-
launch, Nov. 2024.

C. Perry, “Al-powered coding, free of charge with Colab,”
https://blog.google/technology/developers/google-colab-ai-coding-
features/, May 2023.

G. Szalai, “Introducing Deepnote
https://deepnote.com/blog/introducing-deepnote-ai, Jun. 2023.

H. Woodburn, “Give your data work a boost with Al Assist,”
https://observablehq.com/blog/ai-assist, Aug. 2023.

Code,”

AL”

A. Agrawal, “Marimo Notebook: Newsletter 13 (Generate
notebooks with LLMs — now from the command line),”
https://marimo.io/blog/newsletter-13, Apr. 2025.

Anthropic, “Introducing Claude 3.5 Sonnet,”

https://www.anthropic.com/news/claude-3-5-sonnet, Jun. 2024.

S. Willison, “ChatGPT Canvas can make API requests now,
but it’s complicated,” https://simonwillison.net/2024/Dec/10/chatgpt-
canvas/, Dec. 2024.

D. Citron, “New ways to collaborate and get creative with Gemini,”
https://blog.google/products/gemini/gemini-collaboration-features/,
Mar. 2025.

Lovable, “GPT Engineer is now Lovable,” https://lovable.dev, Jun.
2023.

F. Lardinois, “Google launches Project IDX, a new Al-enabled
browser-based development environment,” Aug. 2023.

J. Palmer, “Announcing v0: Generative
https://vercel.com/blog/announcing-v0-generative-ui, Oct. 2023.
S. Krouse, “Introducing Townie AL https://blog.val.town/blog/townie/,
Sep. 2024.

W. A. Ghazaleh, “StackBlitz (Bolt.new): 0 to $20M ARR in 2
months. The fastest growing startup ever?” https://www.todayin-
ai.com/p/stackblitz, Jan. 2025.

X. Qu, “Introducing HeyBoss
https://www.linkedin.com/posts/xiaoyinqu_today-im-thrilled-to-
introduce-heybossxyzthe-activity-7287893469660946435-XCmP/, Feb.
2025.

OpenAl, “Introducing Codex,” https://openai.com/index/introducing-
codex/, May 2025.

T. Mullen and R. J. Salva, “Gemini CLI: Your open-source Al
agent,” https://blog.google/technology/developers/introducing-gemini-
cli-open-source-ai-agent/, Jun. 2025.

uL”

AL”

Q. Team, “Qwen3-Coder: Agentic Coding in the World,”
https://qwenlm.github.io/blog/qwen3-coder/, Jul. 2025.
T. Ball, “Amp is now available. Here’s how I wuse it”

https://ampcode.com/how-i-use-amp, May 2025.

R. Kovics, “OpenCode: Open Source Claude Code Alternative is
Here:,” https://apidog.com/blog/opencode/, Jun. 2025.

C. Gouze, “Launch YC: Nao Labs - Cursor for data,”
https://www.ycombinator.com/launches/NW 1-nao-labs-cursor-for-
data, May 2025.

B. Couriol, “The Void IDE, Open-Source Alternative to Cursor,
Released in Beta,” https://www.infoq.com/news/2025/06/void-ide-beta-
release/, Jun. 2025.

N. Swaminathan and D. Singh, “Introducing Kiro -
https://kiro.dev/blog/introducing-kiro/, Jul. 2025.

Kiro,”

https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00014

[84]
[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]
[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

K. Korevec, “Build with Jules, your asynchronous coding agent,”
https://blog.google/technology/google-labs/jules/, May 2025.

M. Grinberg and E. Reyes, “Factory: The Command Center for
Software Development,” https://www.factory.ai, Feb. 2025.

A. Abati, “Introducing codename goose | codename goose,”
https://block.github.io/goose/blog/2025/01/28/introducing-codename-
goose, Jan. 2025.

Anthropic, “Create Al-Powered Apps with Claude Artifacts - No Cod-
ing Required,” https://www.anthropic.com/news/build-artifacts, Jun.
2025.

Github, “GitHub Copilot coding agent in public preview - GitHub
Changelog,” May 2025.

P. Ng, R. Chouhan, and T. Duncalf, “Introducing Figma Make:
A New Way to Test, Edit, and Prompt Designs | Figma Blog,”
https://www.figma.com/blog/introducing-figma-make/, May 2025.

V. Nallatamby, A. Benard, and S. El-Husseini, “From idea to app:
Introducing Stitch, a new way to design Uls- Google Develop-
ers Blog,” https://developers.googleblog.com/en/stitch-a-new-way-to-
design-uis/, May 2025.

M. Amjad, “Smtg-ai/claude-squad: Manage multiple AI terminal
agents like Claude Code, Aider, Codex, OpenCode, and Amp.”
https://github.com/smtg-ai/claude-squad, Apr. 2025.

Conductor, “Conductor,” https://conductor.build/, Jul. 2025.

E. Jiang, E. Toh, A. Molina, K. Olson, C. Kayacik, A. Donsbach,
C. J. Cai, and M. Terry, “Discovering the syntax and strategies
of natural language programming with generative language models,”
in Proceedings of the 2022 CHI Conference on Human Factors
in Computing Systems, ser. CHI ’22. New York, NY, USA:
Association for Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3491102.3501870

K. Ferdowsi, J. Williams, 1. Drosos, A. D. Gordon, C. Negreanu,
N. Polikarpova, and A. Sarkar, “ColDeco: An End User Spreadsheet
Inspection Tool for AI-Generated Code,” in 2023 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). 1EEE,
2023, pp. 82-91.

M. X. Liu, A. Sarkar, C. Negreanu, B. Zorn, J. Williams, N. Toronto,
and A. D. Gordon, ““what it wants me to say”: Bridging the
abstraction gap between end-user programmers and code-generating
large language models,” in Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems, ser. CHI "23. New York,
NY, USA: Association for Computing Machinery, 2023. [Online].
Available: https://doi.org/10.1145/3544548.3580817

R. Cheng, T. Barik, A. Leung, F. Hohman, and J. Nichols, “BISCUIT:
Scaffolding LLM-Generated Code with Ephemeral Uls in Computa-
tional Notebooks,” in 2024 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE, 2024, pp. 13-23.

P. Vaithilingam, E. L. Glassman, J. P. Inala, and C. Wang, “DynaVis:
Dynamically Synthesized UI Widgets for Visualization Editing,” in CHI
’24: Proceedings of the 2024 CHI Conference on Human Factors in
Computing Systems. New York, NY, USA: Association for Computing
Machinery, 2024, pp. 1-17.

M. Kazemitabaar, J. Williams, 1. Drosos, T. Grossman, A. Z. Henley,
C. Negreanu, and A. Sarkar, “Improving Steering and Verification in
Al-Assisted Data Analysis with Interactive Task Decomposition,” in
UIST ’24: Proceedings of the 37th ACM Symposium on User Interface
Software and Technology. New York, NY, USA: Association for
Computing Machinery, 2024, pp. 1-12.

L. Xie, C. Zheng, H. Xia, H. Qu, and Z.-T. Chen, “WaitGPT: Monitor-
ing and Steering Conversational LLM Agent in Data Analysis with On-
the-Fly Code Visualization,” in UIST ’'24: Proceedings of the 37th ACM
Symposium on User Interface Software and Technology. New York,
NY, USA: Association for Computing Machinery, 2024, pp. 119:1-
119:11.

L. Yan, A. Hwang, Z. Wu, and A. Head, “Ivie: Lightweight Anchored
Explanations of Just-Generated Code,” in CHI '24: Proceedings of the
2024 CHI Conference on Human Factors in Computing Systems. New
York, NY, USA: Association for Computing Machinery, 2024, pp. 1-
15.

K. Ferdowsi, R. Huang, M. B. James, N. Polikarpova, and S. Lerner,
“Validating AI-Generated Code with Live Programming,” in CHI
'24: Proceedings of the 2024 CHI Conference on Human Factors in
Computing Systems. New York, NY, USA: Association for Computing
Machinery, 2024, pp. 1-14.

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

F. Mu, L. Shi, S. Wang, Z. Yu, B. Zhang, C. Wang, S. Liu, and
Q. Wang, “ClarifyGPT: A Framework for Enhancing LLM-Based
Code Generation via Requirements Clarification,” in Proc. ACM Softw.
Eng. 1, FSE (Proceedings of the 32nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering), 2024, pp. Article
103, 23 pages.

R. Yen, J. S. Zhu, S. Suh, H. Xia, and J. Zhao, “CoLadder: Ma-
nipulating Code Generation via Multi-Level Blocks,” in UIST ’'24:
Proceedings of the 37th ACM Symposium on User Interface Software
and Technology. New York, NY, USA: Association for Computing
Machinery, 2024, pp. 11:1-11:20.

C. Zhu-Tian, Z. Xiong, X. Yao, and E. Glassman, “Sketch Then
Generate: Providing Incremental User Feedback and Guiding LLM
Code Generation through Language-Oriented Code Sketches,” arXiv
preprint arXiv:2405.03998, 2024.

L. Chen, S. Xiao, Y. Chen, R. Wu, Y. Song, and L. Sun, “ChatScratch:
An Al-Augmented System Toward Autonomous Visual Programming
Learning for Children Aged 6-12,” in CHI ’24: Proceedings of the
2024 CHI Conference on Human Factors in Computing Systems. New
York, NY, USA: Association for Computing Machinery, 2024, pp. 1-
11.

J. Chen, X. Lu, M. Rejtig, D. Du, R. Bagley, M. S. Horn, and
U. Wilensky, “Learning Agent-based Modeling with LLM Compan-
ions: Experiences of Novices and Experts Using ChatGPT & NetLogo
Chat,” in CHI ’24: Proceedings of the 2024 CHI Conference on Human
Factors in Computing Systems. New York, NY, USA: Association for
Computing Machinery, 2024, pp. 1-17.

V. Murali, C. Maddila, I. Ahmad, M. Bolin, D. Cheng, N. Ghorbani,
R. Fernandez, N. Nagappan, and P. C. Rigby, “Al-Assisted Code
Authoring at Scale: Fine-Tuning, Deploying, and Mixed Methods
Evaluation,” in Proc. ACM Softw. Eng. 1, FSE (Proceedings of the 32nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering), 2024, pp. Article 48, 20 pages.

G. Pinto, C. R. de Souza, J. B. Neto, A. Monteiro, and T. Gotto,
“Lessons from Building StackSpot AI: A Contextualized Al Coding
Assistant,” in ICSE-SEIP ’24: Proceedings of the 46th International
Conference on Software Engineering: Software Engineering in Prac-
tice. New York, NY, USA: Association for Computing Machinery,
2024, pp. 408-417.

P. Mowar, Y.-H. Peng, J. Wu, A. Steinfeld, and J. P. Bigham,
“CodeAlly: Making Al Coding Assistants Useful for Accessible Web
Development,” in CHI '25: Proceedings of the 2025 CHI Conference
on Human Factors in Computing Systems, 2025.

K. Pu, D. Lazaro, I. Arawjo, H. Xia, Z. Xiao, T. Grossman, and
Y. Chen, “Assistance or Disruption? Exploring and Evaluating the
Design and Trade-offs of Proactive Al Programming Support,” in CHI
'25: Proceedings of the 2025 CHI Conference on Human Factors in
Computing Systems, 2025.

V. Chen, A. Zhu, S. Zhao, H. Mozannar, D. Sontag, and A. Talwalkar,
“Need Help? Designing Proactive Al Assistants for Programming,” in
CHI ’25: Proceedings of the 2025 CHI Conference on Human Factors
in Computing Systems, 2025.

Y. Wan, C. Wang, Y. Dong, W. Wang, S. Li, Y. Huo, and M. R.
Lyu, “Divide-and-Conquer: Generating UI Code from Screenshots,” in
Proceedings of the 2025 ACM SIGSOFT International Symposium on
the Foundations of Software Engineering (FSE ’25), 2025.

R. Yen, J. Zhao, and D. Vogel, “Code Shaping: Iterative Code Editing
with Free-form Al-Interpreted Sketching,” in CHI °25: Proceedings of
the 2025 CHI Conference on Human Factors in Computing Systems,
2025.

L. F. Gomes, V. J. Hellendoorn, J. Aldrich, and R. Abreu, “An Ex-
ploratory Study of ML Sketches and Visual Code Assistants,” in /CSE
’25: Proceedings of the 47th International Conference on Software
Engineering, 2025.

W.-H. Chen, W. Tong, A. Case, and T. Zhang, “Dango: A Mixed-
Initiative Data Wrangling System using Large Language Model,” in
CHI ’25: Proceedings of the 2025 CHI Conference on Human Factors
in Computing Systems, 2025.

S. Ma, J. Wang, Y. Zhang, X. Ma, and A. Y. Wang, “DBox: Scaf-
folding Algorithmic Programming Learning through Learner-LLM Co-
Decomposition,” in CHI '25: Proceedings of the 2025 CHI Conference
on Human Factors in Computing Systems, 2025.

M. Kazemitabaar, O. Huang, S. Suh, A. Z. Henley, and T. Grossman,
“Exploring the Design Space of Cognitive Engagement Techniques

https://doi.org/10.1145/3491102.3501870
https://doi.org/10.1145/3544548.3580817

[118]

[119]

[120]

[121]

[122]

[123]

[124]
[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

with Al-Generated Code for Enhanced Learning,” in Proceedings of
the 2025 ACM Conference on Intelligent User Interfaces (IUI '25),
2025.

J. D. Zamfirescu-Pereira, E. Jun, M. Terry, Q. Yang, and B. Hart-
mann, “Beyond Code Generation: LLM-Supported Exploration of the
Program Design Space,” in CHI ’25: Proceedings of the 2025 CHI
Conference on Human Factors in Computing Systems, 2025.

Q. Guo, X. Xie, S. Liu, M. Hu, X. Li, and L. Bu, “Intention is
All You Need: Refining Your Code from Your Intention,” in /CSE
'25: Proceedings of the 47th International Conference on Software
Engineering, 2025.

Y. Di and T. Zhang, “Enhancing Code Generation via Bidirectional
Comment-Level Mutual Grounding,” in ICSE ’25: Proceedings of the
47th International Conference on Software Engineering, 2025.

X. Jiang, Y. Dong, Y. Tao, H. Liu, Z. Jin, and G. Li, “ROCODE:
Integrating Backtracking Mechanism and Program Analysis in Large
Language Models for Code Generation,” in ICSE ’25: Proceedings of
the 47th International Conference on Software Engineering, 2025.

J. Ma, K. Sreedhar, V. Liu, P. A. Perez, S. Wang, R. Sahni, and
L. B. Chilton, “DynEx: Dynamic Code Synthesis with Structured
Design Exploration for Accelerated Exploratory Programming,” in CHI
"25: Proceedings of the 2025 CHI Conference on Human Factors in
Computing Systems, 2025.

S. Earle, S. Parajuli, and A. Banburski-Fahey, “DreamGarden: A
Designer Assistant for Growing Games from a Single Prompt,” in CHI
'25: Proceedings of the 2025 CHI Conference on Human Factors in
Computing Systems, 2025.

N. Friedman, “Introducing GitHub Copilot: Your Al pair programmer,”
Jun. 2021.

P. Kravtsov, “A New Tab Model | Cursor - The AI Code Editor,”
https://www.cursor.com/blog/tab-update, Jan. 2025.

V. Kuka, “Codeium Releases Windsurf Wave 5 with Enhanced Tab
Functionality,” https://learnprompting.org/blog/windsurf-wave-5, Apr.
2025.

B. Murtaugh and B. Holland, “Copilot Next Edit Sugges-
tions (preview),” https://code.visualstudio.com/blogs/2025/02/12/next-
edit-suggestions, Feb. 2025.

OpenAl, “GPT-40 | OpenAl” https://openai.com/index/hello-gpt-40/,
May 2024.

L. Kilpatrick, “Gemini 2.5 Pro Preview: Even bet-
ter coding performance- Google Developers Blog,”
https://developers.googleblog.com/en/gemini-2-5-pro-io-improved-
coding-performance/, May 2025.

Windsurf, “Wave 8: UX Features + Plugins Update,”
https://windsurf.com/blog/windsurf-wave-8-ux-features-and-plugins,
May 2025.

S. Kedar, “Switchable models come to Tabnine Chat,”
https://www.tabnine.com/blog/introducing-switchable-models-for-
tabnine-chat/, Apr. 2024.

Cursor, “Rules | Cursor - The AI Code Editor,”
https://www.cursor.com/changelog/improved-copilot-ux-new-gpt-
4-model, Apr. 2024.

OpenAl, “Memory and new controls for ChatGPT,”
https://openai.com/index/memory-and-new-controls-for-chatgpt/,

Mar. 2024.

A. Osmani, “Why I use Cline for Al Engineering,” Jan. 2025.
Anthropic, “Introducing the = Model Context Protocol,”
https://www.anthropic.com/news/model-context-protocol, Nov. 2024.
R. J. Salva, “Introducing code referencing for GitHub Copilot,” Aug.
2023.

J. Prather, J. Leinonen, N. Kiesler, J. Gorson Benario, S. Lau,
S. MacNeil, N. Norouzi, S. Opel, V. Pettit, L. Porter, B. N.
Reeves, J. Savelka, D. H. Smith, S. Strickroth, and D. Zingaro,
“Beyond the hype: A comprehensive review of current trends in
generative ai research, teaching practices, and tools,” in 2024 Working
Group Reports on Innovation and Technology in Computer Science
Education, ser. ITICSE 2024. New York, NY, USA: Association
for Computing Machinery, 2025, p. 300-338. [Online]. Available:
https://doi.org/10.1145/3689187.3709614

L. Tankelevitch, V. Kewenig, A. Simkute, A. E. Scott, A. Sarkar,
A. Sellen, and S. Rintel, “The Metacognitive Demands and Oppor-
tunities of Generative AL in CHI '24: Proceedings of the 2024 CHI
Conference on Human Factors in Computing Systems. New York, NY,
USA: Association for Computing Machinery, 2024, pp. 1-24.

[139] C. P. Snow, “Two cultures,” Science, vol. 130, no. 3373, pp. 419-419,
1959.

https://doi.org/10.1145/3689187.3709614

	Introduction
	Related Work
	Methods
	Defining ``AI Coding Assistant'' and Scoping Our Study
	Gathering AI Coding Assistants in Academia and Industry
	Data Overview and Analysis
	Study Design Limitations

	Overview of 90 AI Coding Assistants
	Industry Products
	Academic Prototype Systems

	The Design Space of AI Coding Assistants
	User Interface
	System Inputs
	System Capabilities
	System Outputs

	Discussion
	Conclusion: Can we bridge The Two Cultures of Academia and Industry?
	References

